[fx] refactored the file structure of patched function and module (#1238)

* [fx] refactored the file structure of patched function and module

* polish code
This commit is contained in:
Frank Lee
2022-07-12 15:01:58 +08:00
committed by GitHub
parent 17ed33350b
commit 7531c6271f
15 changed files with 353 additions and 318 deletions

View File

@@ -0,0 +1,57 @@
import math
import torch
from ..registry import meta_patched_module
@meta_patched_module.register(torch.nn.Conv1d)
def torch_nn_conv1d(self, input):
# the output shape is calculated using the formula stated
# at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv1d
l_in = input.shape[-1]
c_out = self.out_channels
l_out = math.floor((l_in + 2 * self.padding[0] - self.dilation[0] *
(self.kernel_size[0] - 1) - 1) / self.stride[0] + 1)
result_shape = input.shape[:-2] + (
c_out,
l_out,
)
return torch.empty(result_shape, device='meta')
@meta_patched_module.register(torch.nn.Conv2d)
def torch_nn_conv2d(self, input):
# the output shape is calculated using the formula stated
# at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv2d
h_in, w_in = input.shape[-2:]
c_out = self.out_channels
h_out = math.floor((h_in + 2 * self.padding[0] - self.dilation[0] *
(self.kernel_size[0] - 1) - 1) / self.stride[0] + 1)
w_out = math.floor((w_in + 2 * self.padding[1] - self.dilation[1] *
(self.kernel_size[1] - 1) - 1) / self.stride[1] + 1)
result_shape = input.shape[:-3] + (
c_out,
h_out,
w_out,
)
return torch.empty(result_shape, device='meta')
@meta_patched_module.register(torch.nn.Conv3d)
def torch_nn_conv3d(self, input):
# the output shape is calculated using the formula stated
# at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv3d
d_in, h_in, w_in = input.shape[-3:]
c_out = self.out_channels
d_out = math.floor((d_in + 2 * self.padding[0] - self.dilation[0] *
(self.kernel_size[0] - 1) - 1) / self.stride[0] + 1)
h_out = math.floor((h_in + 2 * self.padding[1] - self.dilation[1] *
(self.kernel_size[1] - 1) - 1) / self.stride[1] + 1)
w_out = math.floor((w_in + 2 * self.padding[2] - self.dilation[2] *
(self.kernel_size[2] - 1) - 1) / self.stride[2] + 1)
result_shape = input.shape[:-4] + (
c_out,
d_out,
h_out,
w_out,
)
return torch.empty(result_shape, device='meta')