mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-23 02:20:49 +00:00
[fx] refactored the file structure of patched function and module (#1238)
* [fx] refactored the file structure of patched function and module * polish code
This commit is contained in:
@@ -0,0 +1,57 @@
|
||||
import math
|
||||
import torch
|
||||
from ..registry import meta_patched_module
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.Conv1d)
|
||||
def torch_nn_conv1d(self, input):
|
||||
# the output shape is calculated using the formula stated
|
||||
# at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv1d
|
||||
l_in = input.shape[-1]
|
||||
c_out = self.out_channels
|
||||
l_out = math.floor((l_in + 2 * self.padding[0] - self.dilation[0] *
|
||||
(self.kernel_size[0] - 1) - 1) / self.stride[0] + 1)
|
||||
result_shape = input.shape[:-2] + (
|
||||
c_out,
|
||||
l_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.Conv2d)
|
||||
def torch_nn_conv2d(self, input):
|
||||
# the output shape is calculated using the formula stated
|
||||
# at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv2d
|
||||
h_in, w_in = input.shape[-2:]
|
||||
c_out = self.out_channels
|
||||
h_out = math.floor((h_in + 2 * self.padding[0] - self.dilation[0] *
|
||||
(self.kernel_size[0] - 1) - 1) / self.stride[0] + 1)
|
||||
w_out = math.floor((w_in + 2 * self.padding[1] - self.dilation[1] *
|
||||
(self.kernel_size[1] - 1) - 1) / self.stride[1] + 1)
|
||||
result_shape = input.shape[:-3] + (
|
||||
c_out,
|
||||
h_out,
|
||||
w_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.Conv3d)
|
||||
def torch_nn_conv3d(self, input):
|
||||
# the output shape is calculated using the formula stated
|
||||
# at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv3d
|
||||
d_in, h_in, w_in = input.shape[-3:]
|
||||
c_out = self.out_channels
|
||||
d_out = math.floor((d_in + 2 * self.padding[0] - self.dilation[0] *
|
||||
(self.kernel_size[0] - 1) - 1) / self.stride[0] + 1)
|
||||
h_out = math.floor((h_in + 2 * self.padding[1] - self.dilation[1] *
|
||||
(self.kernel_size[1] - 1) - 1) / self.stride[1] + 1)
|
||||
w_out = math.floor((w_in + 2 * self.padding[2] - self.dilation[2] *
|
||||
(self.kernel_size[2] - 1) - 1) / self.stride[2] + 1)
|
||||
result_shape = input.shape[:-4] + (
|
||||
c_out,
|
||||
d_out,
|
||||
h_out,
|
||||
w_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
Reference in New Issue
Block a user