mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2026-01-29 21:49:54 +00:00
[MOE] add unitest for MOE experts layout, gradient handler and kernel (#469)
This commit is contained in:
@@ -7,12 +7,9 @@ from .initializer_pipeline import Initializer_Pipeline
|
||||
from .initializer_sequence import Initializer_Sequence
|
||||
from .initializer_tensor import Initializer_Tensor
|
||||
from .initializer_model import Initializer_Model
|
||||
from .initializer_moe import Initializer_Moe
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
__all__ = [
|
||||
'Initializer_Tensor', 'Initializer_Sequence', 'Initializer_Pipeline',
|
||||
'Initializer_Data', 'Initializer_2p5D', 'Initializer_2D', 'Initializer_3D',
|
||||
'Initializer_1D', 'ProcessGroupInitializer', 'Initializer_Model',
|
||||
'Initializer_Moe'
|
||||
'Initializer_Tensor', 'Initializer_Sequence', 'Initializer_Pipeline', 'Initializer_Data', 'Initializer_2p5D',
|
||||
'Initializer_2D', 'Initializer_3D', 'Initializer_1D', 'ProcessGroupInitializer', 'Initializer_Model'
|
||||
]
|
||||
|
||||
@@ -1,119 +0,0 @@
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.registry import DIST_GROUP_INITIALIZER
|
||||
from colossalai.global_variables import moe_env
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
from ..parallel_mode import ParallelMode
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_Moemodel(ProcessGroupInitializer):
|
||||
"""Model parallel initialization for MoE system.
|
||||
|
||||
:param moe_moel: Size of moe model parallel
|
||||
:param moe_data: Size of moe data parallel
|
||||
:param args: Args used in base class
|
||||
:param kwargs: Kwargs used in base class
|
||||
|
||||
:type moe_model: int
|
||||
:type moe_data: int
|
||||
"""
|
||||
def __init__(self, moe_model, moe_data, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.moe_model = moe_model
|
||||
self.moe_data = moe_data
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize model parallel groups in moe parallel environment,
|
||||
and assign local_ranks and groups to each gpu.
|
||||
|
||||
:return: MoE model parallelism's information
|
||||
:rtype: Tuple(local_rank, group_world_size, process_group, ranks_in_group, mode)
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.MOE_MODEL
|
||||
|
||||
for i in range(self.moe_data):
|
||||
ranks = [i * self.moe_model + j for j in range(self.moe_model)]
|
||||
group = dist.new_group(ranks)
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, ranks_in_group, mode
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_Moedata(ProcessGroupInitializer):
|
||||
"""Data parallel initialization for MoE system.
|
||||
|
||||
:param moe_moel: Size of moe model parallel
|
||||
:param moe_data: Size of moe data parallel
|
||||
:param args: Args used in base class
|
||||
:param kwargs: Kwargs used in base class
|
||||
|
||||
:type moe_model: int
|
||||
:type moe_data: int
|
||||
"""
|
||||
def __init__(self, moe_model, moe_data, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.moe_model = moe_model
|
||||
self.moe_data = moe_data
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize data parallel groups in moe parallel environment,
|
||||
and assign local_ranks and groups to each gpu.
|
||||
|
||||
:return: MoE data parallelism's information
|
||||
:rtype: Tuple(local_rank, group_world_size, process_group, ranks_in_group, mode)
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.MOE_DATA
|
||||
|
||||
for i in range(self.moe_model):
|
||||
ranks = [i + j * self.moe_model for j in range(self.moe_data)]
|
||||
group = dist.new_group(ranks)
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, ranks_in_group, mode
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_Moe(ProcessGroupInitializer):
|
||||
"""Serves as the single entry point to MoE parallel initialization.
|
||||
|
||||
:param args: Args used to initialize ProcessGroupInitializer
|
||||
:param kwargs: Kwargs used to initialize ProcessGroupInitializer
|
||||
"""
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.moe_model = moe_env.model_parallel_size
|
||||
self.moe_data = moe_env.data_parallel_size
|
||||
self.model_initializer = Initializer_Moemodel(
|
||||
self.moe_model, self.moe_data, *args, **kwargs)
|
||||
self.data_initializer = Initializer_Moedata(
|
||||
self.moe_model, self.moe_data, *args, **kwargs)
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initializes MoE parallel communication groups.
|
||||
|
||||
:return: MoE parallelism's information
|
||||
:rtype: list of Tuples (local_rank, group_world_size, process_group, ranks_in_group, mode)
|
||||
"""
|
||||
parallel_setting = [self.model_initializer.init_dist_group(),
|
||||
self.data_initializer.init_dist_group()]
|
||||
return parallel_setting
|
||||
Reference in New Issue
Block a user