mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-09 04:50:17 +00:00
[MOE] add unitest for MOE experts layout, gradient handler and kernel (#469)
This commit is contained in:
@@ -46,22 +46,32 @@ class FusedLAMB(torch.optim.Optimizer):
|
||||
use_nvlamb (boolean, optional): Apply adaptive learning rate to 0.0
|
||||
weight decay parameter (default: False)
|
||||
|
||||
.. _Large Batch Optimization for Deep Learning\: Training BERT in 76 minutes:
|
||||
.. _Large Batch Optimization for Deep Learning: Training BERT in 76 minutes:
|
||||
https://arxiv.org/abs/1904.00962
|
||||
.. _On the Convergence of Adam and Beyond:
|
||||
https://openreview.net/forum?id=ryQu7f-RZ
|
||||
"""
|
||||
|
||||
def __init__(self, params, lr=1e-3, bias_correction=True,
|
||||
betas=(0.9, 0.999), eps=1e-6, weight_decay=0.01,
|
||||
amsgrad=False, adam_w_mode=True,
|
||||
grad_averaging=True, set_grad_none=True,
|
||||
max_grad_norm=1.0, use_nvlamb=False):
|
||||
def __init__(self,
|
||||
params,
|
||||
lr=1e-3,
|
||||
bias_correction=True,
|
||||
betas=(0.9, 0.999),
|
||||
eps=1e-6,
|
||||
weight_decay=0.01,
|
||||
amsgrad=False,
|
||||
adam_w_mode=True,
|
||||
grad_averaging=True,
|
||||
set_grad_none=True,
|
||||
max_grad_norm=1.0,
|
||||
use_nvlamb=False):
|
||||
if amsgrad:
|
||||
raise RuntimeError(
|
||||
'FusedLAMB does not support the AMSGrad variant.')
|
||||
defaults = dict(lr=lr, bias_correction=bias_correction,
|
||||
betas=betas, eps=eps, weight_decay=weight_decay,
|
||||
raise RuntimeError('FusedLAMB does not support the AMSGrad variant.')
|
||||
defaults = dict(lr=lr,
|
||||
bias_correction=bias_correction,
|
||||
betas=betas,
|
||||
eps=eps,
|
||||
weight_decay=weight_decay,
|
||||
grad_averaging=grad_averaging,
|
||||
max_grad_norm=max_grad_norm)
|
||||
super(FusedLAMB, self).__init__(params, defaults)
|
||||
@@ -69,8 +79,9 @@ class FusedLAMB(torch.optim.Optimizer):
|
||||
import colossal_C
|
||||
self.multi_tensor_l2norm = colossal_C.multi_tensor_l2norm
|
||||
# Skip buffer
|
||||
self._dummy_overflow_buf = torch.tensor(
|
||||
[0], dtype=torch.int, device=self.param_groups[0]["params"][0].device)
|
||||
self._dummy_overflow_buf = torch.tensor([0],
|
||||
dtype=torch.int,
|
||||
device=self.param_groups[0]["params"][0].device)
|
||||
self.multi_tensor_lamb = colossal_C.multi_tensor_lamb
|
||||
else:
|
||||
raise RuntimeError('FusedLAMB requires cuda extensions')
|
||||
@@ -112,23 +123,16 @@ class FusedLAMB(torch.optim.Optimizer):
|
||||
raise RuntimeError('FusedLAMB only support fp16 and fp32.')
|
||||
|
||||
device = self.param_groups[0]["params"][0].device
|
||||
g_norm_32, g_norm_16 = torch.zeros(
|
||||
1, device=device), torch.zeros(1, device=device)
|
||||
g_norm_32, g_norm_16 = torch.zeros(1, device=device), torch.zeros(1, device=device)
|
||||
# compute grad norm for two lists
|
||||
if len(g_all_32) > 0:
|
||||
g_norm_32 = multi_tensor_applier(self.multi_tensor_l2norm,
|
||||
self._dummy_overflow_buf,
|
||||
[g_all_32], False)[0]
|
||||
g_norm_32 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_32], False)[0]
|
||||
if len(g_all_16) > 0:
|
||||
g_norm_16 = multi_tensor_applier(self.multi_tensor_l2norm,
|
||||
self._dummy_overflow_buf,
|
||||
[g_all_16], False)[0]
|
||||
g_norm_16 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_16], False)[0]
|
||||
|
||||
# blend two grad norms to get global grad norm
|
||||
global_grad_norm = multi_tensor_applier(self.multi_tensor_l2norm,
|
||||
self._dummy_overflow_buf,
|
||||
[[g_norm_32, g_norm_16]],
|
||||
False)[0]
|
||||
global_grad_norm = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf,
|
||||
[[g_norm_32, g_norm_16]], False)[0]
|
||||
max_grad_norm = self.defaults['max_grad_norm']
|
||||
|
||||
for group in self.param_groups:
|
||||
@@ -176,36 +180,14 @@ class FusedLAMB(torch.optim.Optimizer):
|
||||
raise RuntimeError('FusedLAMB only support fp16 and fp32.')
|
||||
|
||||
if (len(g_16) > 0):
|
||||
multi_tensor_applier(self.multi_tensor_lamb,
|
||||
self._dummy_overflow_buf,
|
||||
[g_16, p_16, m_16, v_16],
|
||||
group['lr'],
|
||||
beta1,
|
||||
beta2,
|
||||
group['eps'],
|
||||
group['step'],
|
||||
bias_correction,
|
||||
group['weight_decay'],
|
||||
grad_averaging,
|
||||
self.adam_w_mode,
|
||||
global_grad_norm,
|
||||
max_grad_norm,
|
||||
self.use_nvlamb)
|
||||
multi_tensor_applier(self.multi_tensor_lamb, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16],
|
||||
group['lr'], beta1, beta2, group['eps'], group['step'], bias_correction,
|
||||
group['weight_decay'], grad_averaging, self.adam_w_mode, global_grad_norm,
|
||||
max_grad_norm, self.use_nvlamb)
|
||||
if (len(g_32) > 0):
|
||||
multi_tensor_applier(self.multi_tensor_lamb,
|
||||
self._dummy_overflow_buf,
|
||||
[g_32, p_32, m_32, v_32],
|
||||
group['lr'],
|
||||
beta1,
|
||||
beta2,
|
||||
group['eps'],
|
||||
group['step'],
|
||||
bias_correction,
|
||||
group['weight_decay'],
|
||||
grad_averaging,
|
||||
self.adam_w_mode,
|
||||
global_grad_norm,
|
||||
max_grad_norm,
|
||||
self.use_nvlamb)
|
||||
multi_tensor_applier(self.multi_tensor_lamb, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32],
|
||||
group['lr'], beta1, beta2, group['eps'], group['step'], bias_correction,
|
||||
group['weight_decay'], grad_averaging, self.adam_w_mode, global_grad_norm,
|
||||
max_grad_norm, self.use_nvlamb)
|
||||
|
||||
return loss
|
||||
|
Reference in New Issue
Block a user