mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-31 16:40:41 +00:00
[MOE] add unitest for MOE experts layout, gradient handler and kernel (#469)
This commit is contained in:
72
tests/test_moe/test_grad_handler.py
Normal file
72
tests/test_moe/test_grad_handler.py
Normal file
@@ -0,0 +1,72 @@
|
||||
from functools import partial
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed as dist
|
||||
import colossalai
|
||||
from colossalai.utils import free_port, get_current_device
|
||||
from colossalai.nn.layer.moe import Top1Router, UniformNoiseGenerator, MoeLayer, Experts
|
||||
from colossalai.core import MOE_CONTEXT
|
||||
from colossalai.utils.moe import sync_moe_model_param
|
||||
from colossalai.engine.gradient_handler import MoeGradientHandler
|
||||
from colossalai.testing import assert_equal_in_group
|
||||
|
||||
BATCH_SIZE = 4
|
||||
DIM = 16
|
||||
CONFIG = dict()
|
||||
|
||||
|
||||
def run_test(rank, world_size, port):
|
||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
expert_module = nn.Linear
|
||||
expert_factor = dict(in_features=DIM, out_features=DIM, device=get_current_device())
|
||||
|
||||
MOE_CONTEXT.setup(42) # MOE initialization
|
||||
noisy_func = UniformNoiseGenerator()
|
||||
router = Top1Router(noisy_func=noisy_func)
|
||||
num_experts_list = [1, 2, 4]
|
||||
layer_list = []
|
||||
for num_experts in num_experts_list:
|
||||
exp = Experts(expert_module, num_experts, **expert_factor)
|
||||
moe_layer = MoeLayer(DIM, num_experts, router, exp)
|
||||
layer_list.append(moe_layer)
|
||||
|
||||
model = nn.Sequential(*layer_list)
|
||||
model = model.to(get_current_device())
|
||||
sync_moe_model_param(model)
|
||||
|
||||
dist_dict = MOE_CONTEXT.information
|
||||
assert_equal_in_group(layer_list[0].experts.experts[0].weight.data, dist_dict[1].dp_group)
|
||||
assert_equal_in_group(layer_list[1].experts.experts[0].weight.data, dist_dict[2].dp_group)
|
||||
# MoE model synchronization passed
|
||||
|
||||
grad_handler = MoeGradientHandler(model, 0)
|
||||
|
||||
rank = dist.get_rank()
|
||||
torch.cuda.manual_seed(78 + rank)
|
||||
data = torch.randn(BATCH_SIZE, DIM, device=get_current_device())
|
||||
grad = torch.randn_like(data)
|
||||
|
||||
MOE_CONTEXT.reset_loss()
|
||||
outputs = model(data)
|
||||
outputs.backward(grad)
|
||||
grad_handler.handle_gradient()
|
||||
|
||||
assert_equal_in_group(layer_list[0].experts.experts[0].weight.grad, dist_dict[1].dp_group)
|
||||
assert_equal_in_group(layer_list[0].experts.experts[0].bias.grad, dist_dict[1].dp_group)
|
||||
|
||||
assert_equal_in_group(layer_list[1].experts.experts[0].weight.grad, dist_dict[2].dp_group)
|
||||
assert_equal_in_group(layer_list[1].experts.experts[0].bias.grad, dist_dict[2].dp_group)
|
||||
# MoE grad handler test passed
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
def test_grad_handler():
|
||||
world_size = 4
|
||||
run_func = partial(run_test, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_grad_handler()
|
@@ -7,57 +7,64 @@ import colossalai
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.utils import free_port, get_current_device
|
||||
from colossalai.nn.layer.moe import Top2Router, MoeLayer, Experts
|
||||
from colossalai.context.random import moe_set_seed
|
||||
from colossalai.global_variables import moe_env
|
||||
from colossalai.nn.layer.moe import Top1Router, Top2Router, MoeLayer, Experts
|
||||
from colossalai.core import MOE_CONTEXT
|
||||
|
||||
BATCH_SIZE = 32
|
||||
BATCH_SIZE = 16
|
||||
NUM_EXPERTS = 4
|
||||
CONFIG = dict(parallel=dict(moe=dict(size=4)))
|
||||
CONFIG = dict()
|
||||
|
||||
|
||||
def check_equal(A, B, atol=1e-06):
|
||||
assert torch.allclose(A, B, rtol=0, atol=atol) is True
|
||||
def check_equal(tensor_a, tensor_b, atol=1e-06):
|
||||
assert torch.allclose(tensor_a, tensor_b, rtol=0, atol=atol) is True
|
||||
|
||||
|
||||
def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.float32):
|
||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
moe_set_seed(42)
|
||||
|
||||
def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.float32, router=Top2Router):
|
||||
# Here we do not need TF32, since it brings absolute error on results
|
||||
torch.backends.cuda.matmul.allow_tf32 = False
|
||||
|
||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
local_rank = gpc.get_local_rank(ParallelMode.GLOBAL)
|
||||
torch.manual_seed(rs + local_rank)
|
||||
moe_env.reset_loss()
|
||||
|
||||
MOE_CONTEXT.setup(42) # MOE environment initialization
|
||||
MOE_CONTEXT.reset_loss()
|
||||
torch.manual_seed(rs + local_rank) # set each process has different random seed
|
||||
|
||||
# get randomized data
|
||||
tokens = torch.randn(BATCH_SIZE, hidden_size, dtype=data_type, device=get_current_device(), requires_grad=True)
|
||||
|
||||
router = Top2Router(1)
|
||||
expert = Experts(nn.Identity, 4)
|
||||
layer = MoeLayer(hidden_size, NUM_EXPERTS, router, expert)
|
||||
expert_module = nn.Linear
|
||||
expert_factor = dict(in_features=hidden_size, out_features=hidden_size, device=get_current_device())
|
||||
expert = Experts(expert_module, NUM_EXPERTS, **expert_factor)
|
||||
layer = MoeLayer(hidden_size, NUM_EXPERTS, router(capacity_factor_train=1.0), expert)
|
||||
if data_type == torch.float16:
|
||||
layer = layer.half()
|
||||
layer.cuda_mode = False
|
||||
|
||||
# use matrix multiplication instead of COL_MOE_KERNL in MOE dispatch and combine
|
||||
layer.use_kernel = False
|
||||
old_out = layer(tokens)
|
||||
|
||||
ech = old_out.shape
|
||||
grad = torch.randn(ech, device=get_current_device())
|
||||
old_out.backward(grad)
|
||||
old_out.backward(grad) # get gradient
|
||||
|
||||
# save all results
|
||||
o_tk_grad = tokens.grad.data.clone()
|
||||
o_gt_grad = layer.gate.weight.grad.data.clone()
|
||||
|
||||
# reset all gradients
|
||||
tokens.grad.zero_()
|
||||
layer.gate.weight.grad.zero_()
|
||||
|
||||
layer.cuda_mode = True
|
||||
new_out = layer(tokens)
|
||||
layer.use_kernel = True
|
||||
new_out = layer(tokens) # get ouputs through colossal kernel
|
||||
|
||||
if data_type == torch.float32:
|
||||
check_equal(old_out, new_out)
|
||||
else:
|
||||
check_equal(old_out, new_out, 1e-2)
|
||||
# forward function passed
|
||||
|
||||
new_out.backward(grad)
|
||||
new_out.backward(grad) # get new type gradient
|
||||
n_tk_grad = tokens.grad.data.clone()
|
||||
n_gt_grad = layer.gate.weight.grad.data.clone()
|
||||
|
||||
@@ -65,28 +72,31 @@ def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.f
|
||||
check_equal(o_tk_grad, n_tk_grad)
|
||||
else:
|
||||
check_equal(o_tk_grad, o_tk_grad, 1e-2)
|
||||
# tokens gradient is correct
|
||||
|
||||
if data_type == torch.float32:
|
||||
check_equal(o_gt_grad, n_gt_grad, 5e-05)
|
||||
else:
|
||||
check_equal(o_gt_grad, n_gt_grad, 2e-01)
|
||||
# bias gradient is correct
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="MoE refactoring has not finished yet")
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("rs", [131])
|
||||
@pytest.mark.parametrize("hidden_size", [32, 144])
|
||||
@pytest.mark.parametrize("data_type", [torch.float32, torch.float16])
|
||||
def test_moe_top2(rs, hidden_size, data_type):
|
||||
@pytest.mark.parametrize("router", [Top1Router, Top2Router])
|
||||
def test_moe_kernel(rs, hidden_size, data_type, router):
|
||||
world_size = 4
|
||||
run_func = partial(run_routing,
|
||||
world_size=world_size,
|
||||
port=free_port(),
|
||||
rs=rs,
|
||||
hidden_size=hidden_size,
|
||||
data_type=data_type)
|
||||
data_type=data_type,
|
||||
router=router)
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_moe_top2(2, 256, torch.float16)
|
||||
test_moe_kernel(2, 256, torch.float16, Top2Router)
|
70
tests/test_moe/test_moe_group.py
Normal file
70
tests/test_moe/test_moe_group.py
Normal file
@@ -0,0 +1,70 @@
|
||||
from functools import partial
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed as dist
|
||||
import colossalai
|
||||
from colossalai.utils import free_port, get_current_device
|
||||
from colossalai.nn.layer.moe import Experts
|
||||
from colossalai.core import MOE_CONTEXT
|
||||
from colossalai.utils.moe import sync_moe_model_param
|
||||
from colossalai.testing import assert_equal_in_group
|
||||
|
||||
D_MODEL = 4
|
||||
D_FF = 8
|
||||
CONFIG = dict()
|
||||
|
||||
|
||||
def run_test(rank, world_size, port):
|
||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
expert_module = nn.Linear
|
||||
expert_factor = dict(in_features=D_MODEL, out_features=D_FF, device=get_current_device())
|
||||
|
||||
MOE_CONTEXT.setup(42) # MOE environment initialization
|
||||
exp0 = Experts(expert_module, 1, **expert_factor)
|
||||
exp1 = Experts(expert_module, 2, **expert_factor)
|
||||
exp2 = Experts(expert_module, 4, **expert_factor)
|
||||
exp3 = Experts(expert_module, 8, **expert_factor)
|
||||
|
||||
assert exp0.num_local_experts == 1
|
||||
assert exp1.num_local_experts == 1
|
||||
assert exp2.num_local_experts == 1
|
||||
assert exp3.num_local_experts == 2
|
||||
# experts deployment passed
|
||||
|
||||
dist_dict = MOE_CONTEXT.information
|
||||
rank = dist.get_rank()
|
||||
|
||||
assert len(dist_dict) == 3
|
||||
assert dist.get_rank(dist_dict[4].ep_group) == rank
|
||||
assert dist.get_rank(dist_dict[2].ep_group) == rank % 2
|
||||
assert dist.get_rank(dist_dict[1].ep_group) == 0
|
||||
|
||||
assert dist.get_rank(dist_dict[4].dp_group) == 0
|
||||
assert dist.get_rank(dist_dict[2].dp_group) == rank // 2
|
||||
assert dist.get_rank(dist_dict[1].dp_group) == rank
|
||||
# group creation passed
|
||||
|
||||
model = nn.ModuleList([exp0, exp1, exp2, exp3])
|
||||
model = model.to(get_current_device())
|
||||
sync_moe_model_param(model)
|
||||
|
||||
assert_equal_in_group(exp0.experts[0].weight.data, dist_dict[1].dp_group)
|
||||
assert_equal_in_group(exp0.experts[0].bias.data, dist_dict[1].dp_group)
|
||||
# MOE experts layout success when ep_size = 1
|
||||
|
||||
assert_equal_in_group(exp1.experts[0].weight.data, dist_dict[2].dp_group)
|
||||
assert_equal_in_group(exp1.experts[0].bias.data, dist_dict[2].dp_group)
|
||||
# MOE experts layout success when ep_size = 2
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
def test_moe_initialization():
|
||||
world_size = 4
|
||||
run_func = partial(run_test, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_moe_initialization()
|
@@ -1,97 +0,0 @@
|
||||
from functools import partial
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.multiprocessing as mp
|
||||
import colossalai
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.utils import free_port, get_current_device
|
||||
from colossalai.nn.layer.moe import Top1Router, MoeLayer
|
||||
from colossalai.global_variables import moe_env
|
||||
|
||||
BATCH_SIZE = 32
|
||||
NUM_EXPERTS = 4
|
||||
CONFIG = dict(parallel=dict(moe=dict(size=4)))
|
||||
|
||||
|
||||
def check_equal(A, B, atol=1e-06):
|
||||
assert torch.allclose(A, B, rtol=0, atol=atol) is True
|
||||
|
||||
|
||||
def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.float32):
|
||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
|
||||
# torch.set_printoptions(precision=30)
|
||||
torch.backends.cuda.matmul.allow_tf32 = False
|
||||
local_rank = gpc.get_local_rank(ParallelMode.GLOBAL)
|
||||
torch.manual_seed(rs + local_rank)
|
||||
moe_env.reset_loss()
|
||||
tokens = torch.randn(BATCH_SIZE, hidden_size, dtype=data_type, device=get_current_device(), requires_grad=True)
|
||||
# print(f"tokens:\n{tokens}")
|
||||
router = Top1Router(1)
|
||||
layer = MoeLayer(hidden_size, NUM_EXPERTS, router, nn.Identity())
|
||||
if data_type == torch.float16:
|
||||
layer = layer.half()
|
||||
layer.cuda_mode = False
|
||||
|
||||
old_out = layer(tokens)
|
||||
# print(f"old output:\n{old_out}")
|
||||
|
||||
ech = old_out.shape
|
||||
grad = torch.randn(ech, device=get_current_device())
|
||||
old_out.backward(grad)
|
||||
|
||||
o_tk_grad = tokens.grad.data.clone()
|
||||
o_gt_grad = layer.gate.weight.grad.data.clone()
|
||||
|
||||
tokens.grad.zero_()
|
||||
layer.gate.weight.grad.zero_()
|
||||
|
||||
layer.cuda_mode = True
|
||||
new_out = layer(tokens)
|
||||
|
||||
# print(torch.max(torch.abs(old_out - new_out)))
|
||||
if data_type == torch.float32:
|
||||
check_equal(old_out, new_out)
|
||||
else:
|
||||
check_equal(old_out, new_out, 1e-2)
|
||||
# print(f"forward functions passed")
|
||||
|
||||
# print(f"new output:\n{new_out}")
|
||||
new_out.backward(grad)
|
||||
n_tk_grad = tokens.grad.data.clone()
|
||||
n_gt_grad = layer.gate.weight.grad.data.clone()
|
||||
|
||||
# print(torch.max(torch.abs(o_tk_grad - n_tk_grad)))
|
||||
if data_type == torch.float32:
|
||||
check_equal(o_tk_grad, n_tk_grad)
|
||||
else:
|
||||
check_equal(o_tk_grad, o_tk_grad, 1e-2)
|
||||
# print(f"tokens gradient passed")
|
||||
|
||||
# print(torch.max(torch.abs(o_gt_grad - n_gt_grad)))
|
||||
if data_type == torch.float32:
|
||||
check_equal(o_gt_grad, n_gt_grad, 5e-05)
|
||||
else:
|
||||
check_equal(o_gt_grad, n_gt_grad, 2e-01)
|
||||
# print(f"linear weight gradient passed")
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Should be activated for detailed tests")
|
||||
@pytest.mark.parametrize("rs", [2, 42, 60])
|
||||
@pytest.mark.parametrize("hidden_size", [128, 256, 512, 768, 1024, 2048])
|
||||
@pytest.mark.parametrize("data_type", [torch.float32, torch.float16])
|
||||
def test_moe_top2(rs, hidden_size, data_type):
|
||||
world_size = 4
|
||||
run_func = partial(run_routing,
|
||||
world_size=world_size,
|
||||
port=free_port(),
|
||||
rs=rs,
|
||||
hidden_size=hidden_size,
|
||||
data_type=data_type)
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_moe_top2(60, 512, torch.float16)
|
@@ -1,97 +0,0 @@
|
||||
from functools import partial
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.multiprocessing as mp
|
||||
import colossalai
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.utils import free_port, get_current_device
|
||||
from colossalai.nn.layer.moe import Top2Router, MoeLayer
|
||||
from colossalai.global_variables import moe_env
|
||||
|
||||
BATCH_SIZE = 32
|
||||
NUM_EXPERTS = 4
|
||||
CONFIG = dict(parallel=dict(moe=dict(size=4)))
|
||||
|
||||
|
||||
def check_equal(A, B, atol=1e-06):
|
||||
assert torch.allclose(A, B, rtol=0, atol=atol) is True
|
||||
|
||||
|
||||
def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.float32):
|
||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
|
||||
# torch.set_printoptions(precision=30)
|
||||
torch.backends.cuda.matmul.allow_tf32 = False
|
||||
local_rank = gpc.get_local_rank(ParallelMode.GLOBAL)
|
||||
torch.manual_seed(rs + local_rank)
|
||||
moe_env.reset_loss()
|
||||
tokens = torch.randn(BATCH_SIZE, hidden_size, dtype=data_type, device=get_current_device(), requires_grad=True)
|
||||
# print(f"tokens:\n{tokens}")
|
||||
router = Top2Router(1)
|
||||
layer = MoeLayer(hidden_size, NUM_EXPERTS, router, nn.Identity())
|
||||
if data_type == torch.float16:
|
||||
layer = layer.half()
|
||||
layer.cuda_mode = False
|
||||
|
||||
old_out = layer(tokens)
|
||||
# print(f"old output:\n{old_out}")
|
||||
|
||||
ech = old_out.shape
|
||||
grad = torch.randn(ech, device=get_current_device())
|
||||
old_out.backward(grad)
|
||||
|
||||
o_tk_grad = tokens.grad.data.clone()
|
||||
o_gt_grad = layer.gate.weight.grad.data.clone()
|
||||
|
||||
tokens.grad.zero_()
|
||||
layer.gate.weight.grad.zero_()
|
||||
|
||||
layer.cuda_mode = True
|
||||
new_out = layer(tokens)
|
||||
|
||||
# print(torch.max(torch.abs(old_out - new_out)))
|
||||
if data_type == torch.float32:
|
||||
check_equal(old_out, new_out)
|
||||
else:
|
||||
check_equal(old_out, new_out, 1e-2)
|
||||
# print(f"forward functions passed")
|
||||
|
||||
# print(f"new output:\n{new_out}")
|
||||
new_out.backward(grad)
|
||||
n_tk_grad = tokens.grad.data.clone()
|
||||
n_gt_grad = layer.gate.weight.grad.data.clone()
|
||||
|
||||
# print(torch.max(torch.abs(o_tk_grad - n_tk_grad)))
|
||||
if data_type == torch.float32:
|
||||
check_equal(o_tk_grad, n_tk_grad)
|
||||
else:
|
||||
check_equal(o_tk_grad, o_tk_grad, 1e-2)
|
||||
# print(f"tokens gradient passed")
|
||||
|
||||
# print(torch.max(torch.abs(o_gt_grad - n_gt_grad)))
|
||||
if data_type == torch.float32:
|
||||
check_equal(o_gt_grad, n_gt_grad, 5e-05)
|
||||
else:
|
||||
check_equal(o_gt_grad, n_gt_grad, 2e-01)
|
||||
# print(f"linear weight gradient passed")
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Should be activated for detailed tests")
|
||||
@pytest.mark.parametrize("rs", [2, 42, 60])
|
||||
@pytest.mark.parametrize("hidden_size", [128, 256, 512, 768, 1024, 2048])
|
||||
@pytest.mark.parametrize("data_type", [torch.float32, torch.float16])
|
||||
def test_moe_top2(rs, hidden_size, data_type):
|
||||
world_size = 4
|
||||
run_func = partial(run_routing,
|
||||
world_size=world_size,
|
||||
port=free_port(),
|
||||
rs=rs,
|
||||
hidden_size=hidden_size,
|
||||
data_type=data_type)
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_moe_top2(2, 256, torch.float16)
|
Reference in New Issue
Block a user