[polish] rename col_attr -> colo_attr (#558)

This commit is contained in:
Jiarui Fang
2022-03-31 12:25:45 +08:00
committed by GitHub
parent 2c45efc398
commit 7675366fce
9 changed files with 91 additions and 91 deletions

View File

@@ -35,58 +35,58 @@ class ZeroHook(BaseOpHook):
def pre_fwd_exec(self, module: torch.nn.Module, *args):
tensor_list = []
for param in module.parameters(recurse=False):
assert hasattr(param, 'col_attr')
tensor_list.append(param.col_attr.sharded_data_tensor)
assert hasattr(param, 'colo_attr')
tensor_list.append(param.colo_attr.sharded_data_tensor)
self.shard_strategy.gather(tensor_list, self.process_group)
for param in module.parameters(recurse=False):
colo_model_data_tensor_move_inline(param.col_attr.sharded_data_tensor, self.computing_device)
param.data = param.col_attr.sharded_data_tensor.payload
colo_model_data_tensor_move_inline(param.colo_attr.sharded_data_tensor, self.computing_device)
param.data = param.colo_attr.sharded_data_tensor.payload
if self._memstarts_collector:
self._memstarts_collector.sample_memstats()
for param in module.parameters(recurse=False):
param.col_attr.sharded_data_tensor.trans_state(TensorState.COMPUTE)
param.colo_attr.sharded_data_tensor.trans_state(TensorState.COMPUTE)
def post_fwd_exec(self, module: torch.nn.Module, *args):
for param in module.parameters(recurse=False):
param.col_attr.sharded_data_tensor.trans_state(TensorState.HOLD_AFTER_FWD)
param.colo_attr.sharded_data_tensor.trans_state(TensorState.HOLD_AFTER_FWD)
tensor_list = []
for param in module.parameters(recurse=False):
assert hasattr(param, 'col_attr')
tensor_list.append(param.col_attr.sharded_data_tensor)
assert hasattr(param, 'colo_attr')
tensor_list.append(param.colo_attr.sharded_data_tensor)
self.shard_strategy.shard(tensor_list, self.process_group)
for param in module.parameters(recurse=False):
param.col_attr.remove_torch_payload()
param.colo_attr.remove_torch_payload()
def pre_bwd_exec(self, module: torch.nn.Module, input, output):
tensor_list = []
for param in module.parameters(recurse=False):
assert hasattr(param, 'col_attr')
tensor_list.append(param.col_attr.sharded_data_tensor)
assert hasattr(param, 'colo_attr')
tensor_list.append(param.colo_attr.sharded_data_tensor)
self.shard_strategy.gather(tensor_list, self.process_group)
for param in module.parameters(recurse=False):
colo_model_data_tensor_move_inline(param.col_attr.sharded_data_tensor, self.computing_device)
param.data = param.col_attr.sharded_data_tensor.payload
colo_model_data_tensor_move_inline(param.colo_attr.sharded_data_tensor, self.computing_device)
param.data = param.colo_attr.sharded_data_tensor.payload
if self._memstarts_collector:
self._memstarts_collector.sample_memstats()
for param in module.parameters(recurse=False):
param.col_attr.sharded_data_tensor.trans_state(TensorState.COMPUTE)
param.colo_attr.sharded_data_tensor.trans_state(TensorState.COMPUTE)
def post_bwd_exec(self, module: torch.nn.Module, input):
for param in module.parameters(recurse=False):
param.col_attr.sharded_data_tensor.trans_state(TensorState.HOLD_AFTER_BWD)
param.colo_attr.sharded_data_tensor.trans_state(TensorState.HOLD_AFTER_BWD)
tensor_list = []
for param in module.parameters(recurse=False):
assert hasattr(param, 'col_attr')
tensor_list.append(param.col_attr.sharded_data_tensor)
assert hasattr(param, 'colo_attr')
tensor_list.append(param.colo_attr.sharded_data_tensor)
self.shard_strategy.shard(tensor_list, self.process_group)
for param in module.parameters(recurse=False):
param.col_attr.remove_torch_payload()
param.colo_attr.remove_torch_payload()
def pre_iter(self):
pass