mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 17:17:05 +00:00
[fp8] add fp8 linear (#5967)
* [fp8] add fp8 linear * [test] fix fp8 linear test condition * [test] fix fp8 linear test condition * [test] fix fp8 linear test condition
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
from typing import Any
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@@ -415,3 +415,62 @@ def gather_fp8(output_list, input_, group=None, fp8_format="e5m2"):
|
||||
output = tensor_list[i].view(fp8_type)
|
||||
scale = scale_list[i]
|
||||
output_list[i].copy_(cast_from_fp8(output, scale, input_type))
|
||||
|
||||
|
||||
class _LinearFp8(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(
|
||||
ctx: Any,
|
||||
x: torch.Tensor,
|
||||
w: torch.Tensor,
|
||||
bias: Optional[torch.Tensor],
|
||||
) -> Any:
|
||||
assert (
|
||||
x.dtype in (torch.bfloat16, torch.float16) and x.dtype == w.dtype
|
||||
), "Only float16 and bfloat16 are allowed."
|
||||
if bias is not None:
|
||||
assert bias.dtype == x.dtype, "Bias should have the same dtype as input."
|
||||
# ensure x and w are row-major
|
||||
assert x.is_contiguous() and w.is_contiguous(), "Input and weight should be contiguous."
|
||||
ctx.x_shape = x.shape
|
||||
ctx.has_bias = bias is not None
|
||||
ctx.out_dtype = x.dtype
|
||||
x = x.reshape(-1, x.shape[-1])
|
||||
|
||||
x_fp8, inv_scale_x = cast_to_fp8(x, fp8_format="e4m3")
|
||||
w_fp8, inv_scale_w = cast_to_fp8(w, fp8_format="e4m3")
|
||||
ctx.x_fp8 = x_fp8
|
||||
ctx.w_fp8_t = w_fp8.t()
|
||||
ctx.inv_scale_x = inv_scale_x
|
||||
ctx.inv_scale_w = inv_scale_w
|
||||
out = torch._scaled_mm(
|
||||
x_fp8, ctx.w_fp8_t, bias=bias, out_dtype=ctx.out_dtype, scale_a=inv_scale_x, scale_b=inv_scale_w
|
||||
)[0]
|
||||
return out.reshape(*ctx.x_shape[:-1], w.shape[0])
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx: Any, out_grad) -> Any:
|
||||
out_grad = out_grad.reshape(-1, out_grad.shape[-1])
|
||||
out_grad_fp8, out_grad_scale = cast_to_fp8(out_grad, fp8_format="e5m2")
|
||||
x_grad = torch._scaled_mm(
|
||||
out_grad_fp8,
|
||||
ctx.w_fp8_t.contiguous().t(),
|
||||
out_dtype=ctx.out_dtype,
|
||||
scale_a=out_grad_scale,
|
||||
scale_b=ctx.inv_scale_w,
|
||||
)[0]
|
||||
w_grad = torch._scaled_mm(
|
||||
out_grad_fp8.t().contiguous(),
|
||||
ctx.x_fp8.t().contiguous().t(),
|
||||
out_dtype=ctx.out_dtype,
|
||||
scale_a=out_grad_scale,
|
||||
scale_b=ctx.inv_scale_x,
|
||||
)[0]
|
||||
bias_grad = None
|
||||
if ctx.has_bias:
|
||||
bias_grad = out_grad.sum(0)
|
||||
return x_grad.reshape(ctx.x_shape), w_grad, bias_grad
|
||||
|
||||
|
||||
def linear_fp8(x: torch.Tensor, w: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
return _LinearFp8.apply(x, w, bias)
|
||||
|
Reference in New Issue
Block a user