mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-04 18:40:28 +00:00
[fp8] add fp8 linear (#5967)
* [fp8] add fp8 linear * [test] fix fp8 linear test condition * [test] fix fp8 linear test condition * [test] fix fp8 linear test condition
This commit is contained in:
45
tests/test_fp8/test_fp8_linear.py
Normal file
45
tests/test_fp8/test_fp8_linear.py
Normal file
@@ -0,0 +1,45 @@
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.testing import assert_close
|
||||
|
||||
from colossalai.accelerator import get_accelerator
|
||||
from colossalai.quantization.fp8 import linear_fp8
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
D_IN, D_OUT = 16, 32
|
||||
B, S = 2, 64
|
||||
DTYPE = torch.bfloat16
|
||||
|
||||
|
||||
@pytest.mark.skipif(get_accelerator().get_device_capability()[0] < 9, reason="Test requires device capability >= 9.0")
|
||||
@pytest.mark.parametrize("use_bias", [True, False])
|
||||
@pytest.mark.parametrize("use_batch", [True, False])
|
||||
def test_fp8_linear(use_bias: bool, use_batch: bool):
|
||||
# create tensors
|
||||
w = torch.rand(D_OUT, D_IN, device=get_current_device(), dtype=DTYPE, requires_grad=True)
|
||||
ref_w = w.clone().detach().requires_grad_()
|
||||
if use_batch:
|
||||
x_shape = (B, S, D_IN)
|
||||
else:
|
||||
x_shape = (S, D_IN)
|
||||
x = torch.rand(x_shape, device=get_current_device(), dtype=DTYPE, requires_grad=True)
|
||||
ref_x = x.clone().detach().requires_grad_()
|
||||
if use_bias:
|
||||
bias = torch.rand(D_OUT, device=get_current_device(), dtype=DTYPE, requires_grad=True)
|
||||
ref_bias = bias.clone().detach().requires_grad_()
|
||||
else:
|
||||
bias = None
|
||||
ref_bias = None
|
||||
|
||||
out = linear_fp8(x, w, bias)
|
||||
assert out.shape == x_shape[:-1] + (D_OUT,)
|
||||
out.sum().backward()
|
||||
ref_out = F.linear(ref_x, ref_w, ref_bias)
|
||||
ref_out.sum().backward()
|
||||
|
||||
assert_close(out, ref_out, rtol=0.2, atol=0.1)
|
||||
assert_close(x.grad, ref_x.grad, rtol=0.2, atol=0.1)
|
||||
assert_close(w.grad, ref_w.grad, rtol=0.2, atol=0.1)
|
||||
if use_bias:
|
||||
assert_close(bias.grad, ref_bias.grad, rtol=0.2, atol=0.1)
|
Reference in New Issue
Block a user