[autoparallel] update getitem handler (#2207)

This commit is contained in:
YuliangLiu0306
2022-12-27 19:58:32 +08:00
committed by GitHub
parent 29868a9ec1
commit 78509124d3
4 changed files with 120 additions and 72 deletions

View File

@@ -223,7 +223,8 @@ def _size_value_converting(gm: torch.fx.GraphModule, device_mesh: DeviceMesh):
node.args = new_args
elif isinstance(getitem_index, (tuple, list)):
assert isinstance(getitem_index[0], slice)
if not isinstance(getitem_index[0], slice):
continue
new_slice_items = []
for slice_item in getitem_index:

View File

@@ -16,7 +16,7 @@ __all__ = ['BinaryElementwiseHandler']
@operator_registry.register(BCAST_FUNC_OP)
class BinaryElementwiseHandler(MetaInfoNodeHandler):
class BinaryElementwiseHandler(NodeHandler):
"""
An BinaryBcastOpHandler is a node handler which deals with operations which have two
operands and broadcasting occurs such as torch.add.

View File

@@ -7,7 +7,9 @@ from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
ShardingStrategy,
TrainCycleItem,
)
from colossalai.logging import get_dist_logger
from colossalai.tensor.shape_consistency import CollectiveCommPattern
from colossalai.tensor.sharding_spec import ShardingSpecException
from .strategy_generator import FollowingStrategyGenerator
@@ -69,39 +71,61 @@ class TensorStrategyGenerator(GetItemStrategyGenerator):
def collate_strategies(self) -> List[ShardingStrategy]:
strategy_list = []
getitem_index = self.op_data['index'].data
for index, strategy in enumerate(self.predecessor_node.strategies_vector):
dim_partition_dict_mapping = {}
communication_action_mapping = {}
dim_partition_dict_for_input = strategy.output_sharding_specs[self.op_data["input"]].dim_partition_dict
dim_partition_dict_for_output = copy.deepcopy(dim_partition_dict_for_input)
gather_input = 0 in dim_partition_dict_for_input
if gather_input:
logical_process_axis = dim_partition_dict_for_output.pop(0)
try:
logger = get_dist_logger()
dim_partition_dict_mapping = {}
communication_action_mapping = {}
dim_partition_dict_for_input = copy.deepcopy(
strategy.output_sharding_specs[self.op_data["input"]].dim_partition_dict)
shift_dim_partition_dict_for_output = {}
for dim, mesh_dim_list in dim_partition_dict_for_output.items():
shift_dim_partition_dict_for_output[dim - 1] = mesh_dim_list
dim_partition_dict_for_output = shift_dim_partition_dict_for_output
dim_partition_dict_mapping = {
"input": dim_partition_dict_for_input,
"output": dim_partition_dict_for_output,
}
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
if gather_input:
input_communication_action = self.get_communication_action(
sharding_spec_mapping["input"],
communication_pattern=CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
logical_process_axis=logical_process_axis,
comm_type=CommType.BEFORE,
arg_index=0)
communication_action_mapping["input"] = input_communication_action
int_index = False
if isinstance(getitem_index, int):
int_index = True
getitem_dims = [
0,
]
shift_length = 1
elif isinstance(getitem_index, slice):
getitem_dims = [
0,
]
else:
getitem_dims = [i for i in range(len(getitem_index))]
if isinstance(getitem_index[0], int):
int_index = True
shift_length = len(getitem_index)
name = f'{sharding_spec_mapping["output"].sharding_sequence} = {sharding_spec_mapping["input"].sharding_sequence}_{index}'
gather_dims = []
for dim in getitem_dims:
if dim in dim_partition_dict_for_input:
gather_dims.append(dim)
strategy = self.get_sharding_strategy(name=name,
sharding_spec_mapping=sharding_spec_mapping,
communication_action_mapping=communication_action_mapping)
for dim in gather_dims:
dim_partition_dict_for_input.pop(dim)
dim_partition_dict_for_output = copy.deepcopy(dim_partition_dict_for_input)
if int_index:
shift_dim_partition_dict_for_output = {}
for dim, mesh_dim_list in dim_partition_dict_for_output.items():
shift_dim_partition_dict_for_output[dim - shift_length] = mesh_dim_list
dim_partition_dict_for_output = shift_dim_partition_dict_for_output
dim_partition_dict_mapping = {
"input": dim_partition_dict_for_input,
"output": dim_partition_dict_for_output,
}
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
name = f'{sharding_spec_mapping["output"].sharding_sequence} = {sharding_spec_mapping["input"].sharding_sequence}_{index}'
strategy = self.get_sharding_strategy(name=name,
sharding_spec_mapping=sharding_spec_mapping,
communication_action_mapping=communication_action_mapping)
except ShardingSpecException as e:
logger.debug(e)
continue
strategy_list.append(strategy)
for strategy in strategy_list: