fix layers/schedule for hybrid parallelization (#111) (#112)

This commit is contained in:
ver217
2022-01-04 20:52:31 +08:00
committed by GitHub
parent f03bcb359b
commit 7904baf6e1
6 changed files with 44 additions and 18 deletions

View File

@@ -71,6 +71,7 @@ class Linear1D(torch.nn.Module):
@LAYERS.register_module
class Classifier1D(ParallelLayer):
"""RowLinear with given weight"""
def __init__(self,
in_features: int,
num_classes: int,
@@ -127,8 +128,8 @@ class Classifier1D(ParallelLayer):
output_parallel = F.linear(input_, self.weight)
output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D)
output = output + self.bias
if self.bias is not None:
output = output + self.bias
return output
@@ -152,6 +153,7 @@ class Linear1D_Col(ParallelLayer):
which is :math:`Y_i = XA_i`, defaults to False
:type gather_output: bool, optional
"""
def __init__(self,
in_features: int,
out_features: int,
@@ -233,6 +235,7 @@ class Linear1D_Row(ParallelLayer):
:param parallel_input: If set to ``True``, it's assumed that the input is splitted, defaults to False
:type parallel_input: bool, optional
"""
def __init__(self,
in_features: int,
out_features: int,
@@ -302,6 +305,7 @@ class Linear1D_Row(ParallelLayer):
class MixedFusedLayerNorm1D(torch.nn.Module):
""" Experimental
"""
def __init__(self, normalized_shape, eps=1e-5):
super(MixedFusedLayerNorm1D, self).__init__()

View File

@@ -121,9 +121,10 @@ class classifier_2d(torch.autograd.Function):
B_grad = torch.matmul(output_grad.reshape(-1, output_grad.shape[-1]).transpose(0, 1), A)
B_grad = reduce_scatter(B_grad, -1, ctx.col_parallel_mode)
B_grad = B_grad.reshape(ctx.B_shape)
bias_grad = torch.sum(output_grad, dim=tuple(range(output_grad.ndim - 1)))
bias_grad = all_reduce(bias_grad, ctx.col_parallel_mode)
bias_grad = None
if ctx.use_bias:
bias_grad = torch.sum(output_grad, dim=tuple(range(output_grad.ndim - 1)))
bias_grad = all_reduce(bias_grad, ctx.col_parallel_mode)
return A_grad, B_grad, bias_grad, None, None, None, None, None, None, None, None, None, None
@@ -174,9 +175,9 @@ class Matmul_AB_2D(torch.autograd.Function):
col_group = gpc.get_group(col_parallel_mode)
src_a = summa_dim * row_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \
pipeline_parallel_rank * tensor_parallel_size
pipeline_parallel_rank * tensor_parallel_size
src_b = col_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \
pipeline_parallel_rank * tensor_parallel_size
pipeline_parallel_rank * tensor_parallel_size
opa = [None] * 2
opb = [None] * 2
@@ -279,9 +280,9 @@ class Matmul_ABT_2D(torch.autograd.Function):
col_group = gpc.get_group(col_parallel_mode)
src_b = col_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \
pipeline_parallel_rank * tensor_parallel_size
pipeline_parallel_rank * tensor_parallel_size
src_c = summa_dim * row_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \
pipeline_parallel_rank * tensor_parallel_size
pipeline_parallel_rank * tensor_parallel_size
opb = [None] * 2
opr = [None] * 2
@@ -393,9 +394,9 @@ class Matmul_ATB_2D(torch.autograd.Function):
col_group = gpc.get_group(col_parallel_mode)
src_a = summa_dim * row_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \
pipeline_parallel_rank * tensor_parallel_size
pipeline_parallel_rank * tensor_parallel_size
src_c = col_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \
pipeline_parallel_rank * tensor_parallel_size
pipeline_parallel_rank * tensor_parallel_size
opa = [None] * 2
opr = [None] * 2

View File

@@ -38,3 +38,9 @@ class PipelineSharedModuleWrapper:
for p in module.parameters():
setattr(p, 'pipeline_shared_module_pg', self.group)
dist.broadcast(p, src, group=self.group)
def register_parameter(self, param: nn.Parameter):
assert self.ranks_in_group is not None, f'Rank {gpc.get_local_rank(ParallelMode.PIPELINE)} is not in pipeline_ranks {self.pipeline_ranks}'
src = self.ranks_in_group[self.pipeline_ranks[0]]
setattr(param, 'pipeline_shared_module_pg', self.group)
dist.broadcast(param, src, group=self.group)