[shardformer] add gpt2 policy and modify shard and slicer to support (#3883)

* add gpt2 policy and modify shard and slicer to support

* remove unused code

* polish code
This commit is contained in:
FoolPlayer
2023-06-07 16:09:40 +08:00
committed by Frank Lee
parent 70173e3123
commit 79f8d5d54b
7 changed files with 233 additions and 44 deletions

View File

@@ -2,6 +2,7 @@ from typing import Any, Callable, Dict, List
import torch
import torch.nn as nn
from transformers.pytorch_utils import Conv1D
from ..policies.autopolicy import get_autopolicy
from ..policies.basepolicy import Policy
@@ -35,10 +36,22 @@ class ModelSharder(object):
self.model_config = self.model.config
def shard(self) -> None:
self.reshape_embedding()
self.inject_model(self.model)
self.replace_layer(self.model)
self.bind_layer(self.model)
def reshape_embedding(self,) -> None:
r"""
Reshape the Embedding layer to make the embedding dimension divisible by world_size
"""
vocab_size = self.model_config.vocab_size
world_size = self.shard_config.world_size
if vocab_size % world_size != 0:
new_vocab_size = vocab_size + world_size - vocab_size % world_size
self.model.resize_token_embeddings(new_vocab_size)
self.model_config = self.model.config
def inject_model(
self,
model: nn.Module,
@@ -53,6 +66,8 @@ class ModelSharder(object):
"""
inject_policy = self.policy.inject_policy()
if inject_policy is None:
return
org_model_cls = inject_policy[0]
shard_model_cls = inject_policy[1]
@@ -82,9 +97,9 @@ class ModelSharder(object):
origin_layer_cls = argument_policy[0]
attr_dict = argument_policy[1].attr_dict
param_funcs = argument_policy[1].param_funcs
self.reverse_replace_layer(model, origin_layer_cls, attr_dict, param_funcs)
self.traverse_replace_layer(model, origin_layer_cls, attr_dict, param_funcs)
def reverse_replace_layer(
def traverse_replace_layer(
self,
layer: nn.Module,
origin_cls: nn.Module,
@@ -100,17 +115,12 @@ class ModelSharder(object):
attr_dict (Dict): The attribute dict to modify
policy_cls (:class:`Policy`): The policy class
"""
if layer.__class__ == origin_cls:
for k, v in attr_dict.items():
setattr_(layer, k, v, ignore=True)
self.shard_one_layer(layer, param_funcs)
for name, child in layer.named_children():
if child.__class__ == origin_cls:
# replac_layer = child
for k, v in attr_dict.items():
setattr_(child, k, v, ignore=True)
# print(f"Sharding {name} layer", replac_layer.attention.self.__dict__)
# setattr_(layer, name, self.shard_one_layer(child, policy_cls))
self.shard_one_layer(child, param_funcs)
continue
self.reverse_replace_layer(child, origin_cls, attr_dict, param_funcs)
self.traverse_replace_layer(child, origin_cls, attr_dict, param_funcs)
return layer
def shard_one_layer(
@@ -126,7 +136,6 @@ class ModelSharder(object):
param_funcs (:class:`List[typing.Callable]`): The function list to get shard information in policy class
"""
# print(org_layer)
for func in param_funcs:
policy_layers = func()
for policy_layer in policy_layers:
@@ -136,9 +145,10 @@ class ModelSharder(object):
bias_attr = policy_layer.bias
replace_layer_cls = policy_layer.replace_layer
ignore = policy_layer.ignore
n_cast = policy_layer.n_cast
reversed = policy_layer.reversed
if policy_layer.__class__.__name__ == "Col_Layer":
gather_output = policy_layer.gather_output
# print(gather_output)
if weight_attr is not None:
if hasattr_(org_layer, weight_attr):
@@ -161,13 +171,11 @@ class ModelSharder(object):
layer_attr = (lambda x: x[:x.rfind(".")])(weight_attr or bias_attr)
# slice weight and bias
weight, bias = self.slicer.slice_weight_bias(weight, bias, policy_layer.__class__)
# print(os.environ['RANK'], policy_layer.__class__, weight.shape, bias.shape if bias is not None else None)
weight, bias = self.slicer.slice_weight_bias(weight, bias, policy_layer.__class__, n_cast, reversed)
# create new object to replace the origin layer
if replace_layer_cls is not None:
# print(f"RANK {os.environ['RANK']}: replace {getattr_(org_layer, layer_attr).__class__} to {replace_layer_cls}, shape is {weight.shape}")
if isinstance(getattr_(org_layer, layer_attr), nn.Linear):
if isinstance(getattr_(org_layer, layer_attr), (nn.Linear, Conv1D)):
if replace_layer_cls.__name__ == "Linear1D_Row":
replace_layer = replace_layer_cls(weight.shape[1],
weight.shape[0],
@@ -235,6 +243,8 @@ class ModelSharder(object):
model (:class:`torch.nn.Module`): The shard model
"""
binding_map = self.policy.binding_policy()
if binding_map is None:
return
for k, v in binding_map.items():
param = getattr_(model, k)
param = nn.Parameter(param)