mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-15 22:19:38 +00:00
Update metainfo patch branch (#2517)
* init
* rename and remove useless func
* basic chunk
* add evoformer
* align evoformer
* add meta
* basic chunk
* basic memory
* finish basic inference memory estimation
* finish memory estimation
* fix bug
* finish memory estimation
* add part of index tracer
* finish basic index tracer
* add doc string
* add doc str
* polish code
* polish code
* update active log
* polish code
* add possible region search
* finish region search loop
* finish chunk define
* support new op
* rename index tracer
* finishi codegen on msa
* redesign index tracer, add source and change compute
* pass outproduct mean
* code format
* code format
* work with outerproductmean and msa
* code style
* code style
* code style
* code style
* change threshold
* support check_index_duplicate
* support index dupilictae and update loop
* support output
* update memory estimate
* optimise search
* fix layernorm
* move flow tracer
* refactor flow tracer
* format code
* refactor flow search
* code style
* adapt codegen to prepose node
* code style
* remove abandoned function
* remove flow tracer
* code style
* code style
* reorder nodes
* finish node reorder
* update run
* code style
* add chunk select class
* add chunk select
* code style
* add chunksize in emit, fix bug in reassgin shape
* code style
* turn off print mem
* add evoformer openfold init
* init openfold
* add benchmark
* add print
* code style
* code style
* init openfold
* update openfold
* align openfold
* use max_mem to control stratge
* update source add
* add reorder in mem estimator
* improve reorder efficeincy
* support ones_like, add prompt if fit mode search fail
* fix a bug in ones like, dont gen chunk if dim size is 1
* fix bug again
* update min memory stratege, reduce mem usage by 30%
* last version of benchmark
* refactor structure
* restruct dir
* update test
* rename
* take apart chunk code gen
* close mem and code print
* code format
* rename ambiguous variable
* seperate flow tracer
* seperate input node dim search
* seperate prepose_nodes
* seperate non chunk input
* seperate reorder
* rename
* ad reorder graph
* seperate trace flow
* code style
* code style
* fix typo
* set benchmark
* rename test
* update codegen test
* Fix state_dict key missing issue of the ZeroDDP (#2363)
* Fix state_dict output for ZeroDDP duplicated parameters
* Rewrite state_dict based on get_static_torch_model
* Modify get_static_torch_model to be compatible with the lower version (ZeroDDP)
* update codegen test
* update codegen test
* add chunk search test
* code style
* add available
* [hotfix] fix gpt gemini example (#2404)
* [hotfix] fix gpt gemini example
* [example] add new assertions
* remove autochunk_available
* [workflow] added nightly release to pypi (#2403)
* add comments
* code style
* add doc for search chunk
* [doc] updated readme regarding pypi installation (#2406)
* add doc for search
* [doc] updated kernel-related optimisers' docstring (#2385)
* [doc] updated kernel-related optimisers' docstring
* polish doc
* rename trace_index to trace_indice
* rename function from index to indice
* rename
* rename in doc
* [polish] polish code for get_static_torch_model (#2405)
* [gemini] polish code
* [testing] remove code
* [gemini] make more robust
* rename
* rename
* remove useless function
* [worfklow] added coverage test (#2399)
* [worfklow] added coverage test
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* add doc for trace indice
* [docker] updated Dockerfile and release workflow (#2410)
* add doc
* update doc
* add available
* change imports
* add test in import
* [workflow] refactored the example check workflow (#2411)
* [workflow] refactored the example check workflow
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* Update parallel_context.py (#2408)
* [hotfix] add DISTPAN argument for benchmark (#2412)
* change the benchmark config file
* change config
* revert config file
* rename distpan to distplan
* [workflow] added precommit check for code consistency (#2401)
* [workflow] added precommit check for code consistency
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* adapt new fx
* [workflow] added translation for non-english comments (#2414)
* [setup] refactored setup.py for dependency graph (#2413)
* change import
* update doc
* [workflow] auto comment if precommit check fails (#2417)
* [hotfix] add norm clearing for the overflow step (#2416)
* [examples] adding tflops to PaLM (#2365)
* [workflow]auto comment with test coverage report (#2419)
* [workflow]auto comment with test coverage report
* polish code
* polish yaml
* [doc] added documentation for CI/CD (#2420)
* [doc] added documentation for CI/CD
* polish markdown
* polish markdown
* polish markdown
* [example] removed duplicated stable diffusion example (#2424)
* [zero] add inference mode and its unit test (#2418)
* [workflow] report test coverage even if below threshold (#2431)
* [example] improved the clarity yof the example readme (#2427)
* [example] improved the clarity yof the example readme
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* [ddp] add is_ddp_ignored (#2434)
[ddp] rename to is_ddp_ignored
* [workflow] make test coverage report collapsable (#2436)
* [autoparallel] add shard option (#2423)
* [fx] allow native ckpt trace and codegen. (#2438)
* [cli] provided more details if colossalai run fail (#2442)
* [autoparallel] integrate device mesh initialization into autoparallelize (#2393)
* [autoparallel] integrate device mesh initialization into autoparallelize
* add megatron solution
* update gpt autoparallel examples with latest api
* adapt beta value to fit the current computation cost
* [zero] fix state_dict and load_state_dict for ddp ignored parameters (#2443)
* [ddp] add is_ddp_ignored
[ddp] rename to is_ddp_ignored
* [zero] fix state_dict and load_state_dict
* fix bugs
* [zero] update unit test for ZeroDDP
* [example] updated the hybrid parallel tutorial (#2444)
* [example] updated the hybrid parallel tutorial
* polish code
* [zero] add warning for ignored parameters (#2446)
* [example] updated large-batch optimizer tutorial (#2448)
* [example] updated large-batch optimizer tutorial
* polish code
* polish code
* [example] fixed seed error in train_dreambooth_colossalai.py (#2445)
* [workflow] fixed the on-merge condition check (#2452)
* [workflow] automated the compatiblity test (#2453)
* [workflow] automated the compatiblity test
* polish code
* [autoparallel] update binary elementwise handler (#2451)
* [autoparallel] update binary elementwise handler
* polish
* [workflow] automated bdist wheel build (#2459)
* [workflow] automated bdist wheel build
* polish workflow
* polish readme
* polish readme
* Fix False warning in initialize.py (#2456)
* Update initialize.py
* pre-commit run check
* [examples] update autoparallel tutorial demo (#2449)
* [examples] update autoparallel tutorial demo
* add test_ci.sh
* polish
* add conda yaml
* [cli] fixed hostname mismatch error (#2465)
* [example] integrate autoparallel demo with CI (#2466)
* [example] integrate autoparallel demo with CI
* polish code
* polish code
* polish code
* polish code
* [zero] low level optim supports ProcessGroup (#2464)
* [example] update vit ci script (#2469)
* [example] update vit ci script
* [example] update requirements
* [example] update requirements
* [example] integrate seq-parallel tutorial with CI (#2463)
* [zero] polish low level optimizer (#2473)
* polish pp middleware (#2476)
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
* [example] update gpt gemini example ci test (#2477)
* [zero] add unit test for low-level zero init (#2474)
* [workflow] fixed the skip condition of example weekly check workflow (#2481)
* [example] stable diffusion add roadmap
* add dummy test_ci.sh
* [example] stable diffusion add roadmap (#2482)
* [CI] add test_ci.sh for palm, opt and gpt (#2475)
* polish code
* [example] titans for gpt
* polish readme
* remove license
* polish code
* update readme
* [example] titans for gpt (#2484)
* [autoparallel] support origin activation ckpt on autoprallel system (#2468)
* [autochunk] support evoformer tracer (#2485)
support full evoformer tracer, which is a main module of alphafold. previously we just support a simplifed version of it.
1. support some evoformer's op in fx
2. support evoformer test
3. add repos for test code
* [example] fix requirements (#2488)
* [zero] add unit testings for hybrid parallelism (#2486)
* [hotfix] gpt example titans bug #2493
* polish code and fix dataloader bugs
* [hotfix] gpt example titans bug #2493 (#2494)
* [fx] allow control of ckpt_codegen init (#2498)
* [fx] allow control of ckpt_codegen init
Currently in ColoGraphModule, ActivationCheckpointCodeGen will be set automatically in __init__. But other codegen can't be set if so.
So I add an arg to control whether to set ActivationCheckpointCodeGen in __init__.
* code style
* [example] dreambooth example
* add test_ci.sh to dreambooth
* [autochunk] support autochunk on evoformer (#2497)
* Revert "Update parallel_context.py (#2408)"
This reverts commit 7d5640b9db
.
* add avg partition (#2483)
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
* [auto-chunk] support extramsa (#3) (#2504)
* [utils] lazy init. (#2148)
* [utils] lazy init.
* [utils] remove description.
* [utils] complete.
* [utils] finalize.
* [utils] fix names.
* [autochunk] support parsing blocks (#2506)
* [zero] add strict ddp mode (#2508)
* [zero] add strict ddp mode
* [polish] add comments for strict ddp mode
* [zero] fix test error
* [doc] update opt and tutorial links (#2509)
* [workflow] fixed changed file detection (#2515)
Co-authored-by: oahzxl <xuanlei.zhao@gmail.com>
Co-authored-by: eric8607242 <e0928021388@gmail.com>
Co-authored-by: HELSON <c2h214748@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: Haofan Wang <haofanwang.ai@gmail.com>
Co-authored-by: Jiarui Fang <fangjiarui123@gmail.com>
Co-authored-by: ZijianYY <119492445+ZijianYY@users.noreply.github.com>
Co-authored-by: YuliangLiu0306 <72588413+YuliangLiu0306@users.noreply.github.com>
Co-authored-by: Super Daniel <78588128+super-dainiu@users.noreply.github.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang97@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
Co-authored-by: oahzxl <43881818+oahzxl@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Fazzie-Maqianli <55798671+Fazziekey@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
This commit is contained in:
@@ -26,6 +26,16 @@ Acceleration of AIGC (AI-Generated Content) models such as [Stable Diffusion v1]
|
||||
|
||||
More details can be found in our [blog of Stable Diffusion v1](https://www.hpc-ai.tech/blog/diffusion-pretraining-and-hardware-fine-tuning-can-be-almost-7x-cheaper) and [blog of Stable Diffusion v2](https://www.hpc-ai.tech/blog/colossal-ai-0-2-0).
|
||||
|
||||
|
||||
## Roadmap
|
||||
This project is in rapid development.
|
||||
|
||||
- [X] Train a stable diffusion model v1/v2 from scatch
|
||||
- [X] Finetune a pretrained Stable diffusion v1 model
|
||||
- [X] Inference a pretrained model using PyTorch
|
||||
- [ ] Finetune a pretrained Stable diffusion v2 model
|
||||
- [ ] Inference a pretrained model using TensoRT
|
||||
|
||||
## Installation
|
||||
|
||||
### Option #1: install from source
|
||||
@@ -123,7 +133,7 @@ git clone https://huggingface.co/CompVis/stable-diffusion-v1-4
|
||||
|
||||
### stable-diffusion-v1-5 from runway
|
||||
|
||||
If you want to useed the Last [stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) wiegh from runwayml
|
||||
If you want to useed the Last [stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) weight from runwayml
|
||||
|
||||
```
|
||||
git lfs install
|
||||
@@ -156,7 +166,7 @@ You can change the trainging config in the yaml file
|
||||
- precision: the precision type used in training, default 16 (fp16), you must use fp16 if you want to apply colossalai
|
||||
- more information about the configuration of ColossalAIStrategy can be found [here](https://pytorch-lightning.readthedocs.io/en/latest/advanced/model_parallel.html#colossal-ai)
|
||||
|
||||
## Finetune Example
|
||||
## Finetune Example (Work In Progress)
|
||||
### Training on Teyvat Datasets
|
||||
|
||||
We provide the finetuning example on [Teyvat](https://huggingface.co/datasets/Fazzie/Teyvat) dataset, which is create by BLIP generated captions.
|
||||
|
0
examples/images/diffusion/test_ci.sh
Normal file
0
examples/images/diffusion/test_ci.sh
Normal file
0
examples/images/dreambooth/test_ci.sh
Normal file
0
examples/images/dreambooth/test_ci.sh
Normal file
@@ -153,7 +153,8 @@ def parse_args(input_args=None):
|
||||
"--gradient_accumulation_steps",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
||||
help=
|
||||
"Number of updates steps to accumulate before performing a backward/update pass. If using Gemini, it must be 1",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--gradient_checkpointing",
|
||||
@@ -355,10 +356,14 @@ def gemini_zero_dpp(model: torch.nn.Module, placememt_policy: str = "auto"):
|
||||
|
||||
|
||||
def main(args):
|
||||
colossalai.launch_from_torch(config={})
|
||||
|
||||
if args.seed is not None:
|
||||
gpc.set_seed(args.seed)
|
||||
if args.seed is None:
|
||||
colossalai.launch_from_torch(config={})
|
||||
else:
|
||||
colossalai.launch_from_torch(config={}, seed=args.seed)
|
||||
|
||||
local_rank = gpc.get_local_rank(ParallelMode.DATA)
|
||||
world_size = gpc.get_world_size(ParallelMode.DATA)
|
||||
|
||||
if args.with_prior_preservation:
|
||||
class_images_dir = Path(args.class_data_dir)
|
||||
@@ -387,7 +392,7 @@ def main(args):
|
||||
for example in tqdm(
|
||||
sample_dataloader,
|
||||
desc="Generating class images",
|
||||
disable=not gpc.get_local_rank(ParallelMode.DATA) == 0,
|
||||
disable=not local_rank == 0,
|
||||
):
|
||||
images = pipeline(example["prompt"]).images
|
||||
|
||||
@@ -399,7 +404,7 @@ def main(args):
|
||||
del pipeline
|
||||
|
||||
# Handle the repository creation
|
||||
if gpc.get_local_rank(ParallelMode.DATA) == 0:
|
||||
if local_rank == 0:
|
||||
if args.push_to_hub:
|
||||
if args.hub_model_id is None:
|
||||
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
|
||||
@@ -464,8 +469,9 @@ def main(args):
|
||||
if args.gradient_checkpointing:
|
||||
unet.enable_gradient_checkpointing()
|
||||
|
||||
assert args.gradient_accumulation_steps == 1, "if using ColossalAI gradient_accumulation_steps must be set to 1."
|
||||
if args.scale_lr:
|
||||
args.learning_rate = args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * gpc.get_world_size(ParallelMode.DATA)
|
||||
args.learning_rate = args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * world_size
|
||||
|
||||
unet = gemini_zero_dpp(unet, args.placement)
|
||||
|
||||
@@ -554,7 +560,7 @@ def main(args):
|
||||
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
||||
|
||||
# Train!
|
||||
total_batch_size = args.train_batch_size * gpc.get_world_size(ParallelMode.DATA) * args.gradient_accumulation_steps
|
||||
total_batch_size = args.train_batch_size * world_size * args.gradient_accumulation_steps
|
||||
|
||||
logger.info("***** Running training *****", ranks=[0])
|
||||
logger.info(f" Num examples = {len(train_dataset)}", ranks=[0])
|
||||
@@ -566,7 +572,7 @@ def main(args):
|
||||
logger.info(f" Total optimization steps = {args.max_train_steps}", ranks=[0])
|
||||
|
||||
# Only show the progress bar once on each machine.
|
||||
progress_bar = tqdm(range(args.max_train_steps), disable=not gpc.get_local_rank(ParallelMode.DATA) == 0)
|
||||
progress_bar = tqdm(range(args.max_train_steps), disable=not local_rank == 0)
|
||||
progress_bar.set_description("Steps")
|
||||
global_step = 0
|
||||
|
||||
@@ -643,7 +649,7 @@ def main(args):
|
||||
if global_step % args.save_steps == 0:
|
||||
torch.cuda.synchronize()
|
||||
torch_unet = get_static_torch_model(unet)
|
||||
if gpc.get_local_rank(ParallelMode.DATA) == 0:
|
||||
if local_rank == 0:
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
args.pretrained_model_name_or_path,
|
||||
unet=torch_unet,
|
||||
@@ -658,7 +664,7 @@ def main(args):
|
||||
torch.cuda.synchronize()
|
||||
unet = get_static_torch_model(unet)
|
||||
|
||||
if gpc.get_local_rank(ParallelMode.DATA) == 0:
|
||||
if local_rank == 0:
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
args.pretrained_model_name_or_path,
|
||||
unet=unet,
|
||||
|
32
examples/images/vit/configs/vit_1d_tp2_ci.py
Normal file
32
examples/images/vit/configs/vit_1d_tp2_ci.py
Normal file
@@ -0,0 +1,32 @@
|
||||
from colossalai.amp import AMP_TYPE
|
||||
|
||||
# hyperparameters
|
||||
# BATCH_SIZE is as per GPU
|
||||
# global batch size = BATCH_SIZE x data parallel size
|
||||
BATCH_SIZE = 8
|
||||
LEARNING_RATE = 3e-3
|
||||
WEIGHT_DECAY = 0.3
|
||||
NUM_EPOCHS = 3
|
||||
WARMUP_EPOCHS = 1
|
||||
|
||||
# model config
|
||||
IMG_SIZE = 224
|
||||
PATCH_SIZE = 16
|
||||
HIDDEN_SIZE = 32
|
||||
DEPTH = 2
|
||||
NUM_HEADS = 4
|
||||
MLP_RATIO = 4
|
||||
NUM_CLASSES = 10
|
||||
CHECKPOINT = False
|
||||
SEQ_LENGTH = (IMG_SIZE // PATCH_SIZE)**2 + 1 # add 1 for cls token
|
||||
|
||||
USE_DDP = True
|
||||
TP_WORLD_SIZE = 2
|
||||
TP_TYPE = 'row'
|
||||
parallel = dict(tensor=dict(mode="1d", size=TP_WORLD_SIZE),)
|
||||
|
||||
fp16 = dict(mode=AMP_TYPE.NAIVE)
|
||||
clip_grad_norm = 1.0
|
||||
gradient_accumulation = 2
|
||||
|
||||
LOG_PATH = "./log_ci"
|
@@ -1,2 +1,8 @@
|
||||
colossalai >= 0.1.12
|
||||
torch >= 1.8.1
|
||||
numpy>=1.24.1
|
||||
timm>=0.6.12
|
||||
titans>=0.0.7
|
||||
tqdm>=4.61.2
|
||||
transformers>=4.25.1
|
||||
nvidia-dali-cuda110>=1.8.0 --extra-index-url https://developer.download.nvidia.com/compute/redist
|
||||
|
9
examples/images/vit/test_ci.sh
Normal file
9
examples/images/vit/test_ci.sh
Normal file
@@ -0,0 +1,9 @@
|
||||
export OMP_NUM_THREADS=4
|
||||
|
||||
pip install -r requirements.txt
|
||||
|
||||
# train
|
||||
colossalai run \
|
||||
--nproc_per_node 4 train.py \
|
||||
--config configs/vit_1d_tp2_ci.py \
|
||||
--dummy_data
|
@@ -7,6 +7,7 @@ import torch.nn.functional as F
|
||||
from timm.models.vision_transformer import _create_vision_transformer
|
||||
from titans.dataloader.imagenet import build_dali_imagenet
|
||||
from tqdm import tqdm
|
||||
from vit import DummyDataLoader
|
||||
|
||||
import colossalai
|
||||
from colossalai.core import global_context as gpc
|
||||
@@ -56,8 +57,8 @@ def init_spec_func(model, tp_type):
|
||||
def train_imagenet():
|
||||
|
||||
parser = colossalai.get_default_parser()
|
||||
parser.add_argument('--from_torch', default=True, action='store_true')
|
||||
parser.add_argument('--resume_from', default=False)
|
||||
parser.add_argument('--resume_from', default=False, action='store_true')
|
||||
parser.add_argument('--dummy_data', default=False, action='store_true')
|
||||
|
||||
args = parser.parse_args()
|
||||
colossalai.launch_from_torch(config=args.config)
|
||||
@@ -74,10 +75,22 @@ def train_imagenet():
|
||||
logger.log_to_file(log_path)
|
||||
|
||||
logger.info('Build data loader', ranks=[0])
|
||||
root = os.environ['DATA']
|
||||
train_dataloader, test_dataloader = build_dali_imagenet(root,
|
||||
train_batch_size=gpc.config.BATCH_SIZE,
|
||||
test_batch_size=gpc.config.BATCH_SIZE)
|
||||
if not args.dummy_data:
|
||||
root = os.environ['DATA']
|
||||
train_dataloader, test_dataloader = build_dali_imagenet(root,
|
||||
train_batch_size=gpc.config.BATCH_SIZE,
|
||||
test_batch_size=gpc.config.BATCH_SIZE)
|
||||
else:
|
||||
train_dataloader = DummyDataLoader(length=10,
|
||||
batch_size=gpc.config.BATCH_SIZE,
|
||||
category=gpc.config.NUM_CLASSES,
|
||||
image_size=gpc.config.IMG_SIZE,
|
||||
return_dict=False)
|
||||
test_dataloader = DummyDataLoader(length=5,
|
||||
batch_size=gpc.config.BATCH_SIZE,
|
||||
category=gpc.config.NUM_CLASSES,
|
||||
image_size=gpc.config.IMG_SIZE,
|
||||
return_dict=False)
|
||||
|
||||
logger.info('Build model', ranks=[0])
|
||||
|
||||
|
@@ -32,21 +32,24 @@ class DummyDataGenerator(ABC):
|
||||
|
||||
|
||||
class DummyDataLoader(DummyDataGenerator):
|
||||
batch_size = 4
|
||||
channel = 3
|
||||
category = 8
|
||||
image_size = 224
|
||||
|
||||
def __init__(self, length=10, batch_size=4, channel=3, category=8, image_size=224, return_dict=True):
|
||||
super().__init__(length)
|
||||
self.batch_size = batch_size
|
||||
self.channel = channel
|
||||
self.category = category
|
||||
self.image_size = image_size
|
||||
self.return_dict = return_dict
|
||||
|
||||
def generate(self):
|
||||
image_dict = {}
|
||||
image_dict['pixel_values'] = torch.rand(DummyDataLoader.batch_size,
|
||||
DummyDataLoader.channel,
|
||||
DummyDataLoader.image_size,
|
||||
DummyDataLoader.image_size,
|
||||
device=get_current_device()) * 2 - 1
|
||||
image_dict['label'] = torch.randint(DummyDataLoader.category, (DummyDataLoader.batch_size,),
|
||||
image_dict['pixel_values'] = torch.rand(
|
||||
self.batch_size, self.channel, self.image_size, self.image_size, device=get_current_device()) * 2 - 1
|
||||
image_dict['label'] = torch.randint(self.category, (self.batch_size,),
|
||||
dtype=torch.int64,
|
||||
device=get_current_device())
|
||||
if not self.return_dict:
|
||||
return image_dict['pixel_values'], image_dict['label']
|
||||
return image_dict
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user