mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-06 19:40:28 +00:00
Update metainfo patch branch (#2517)
* init
* rename and remove useless func
* basic chunk
* add evoformer
* align evoformer
* add meta
* basic chunk
* basic memory
* finish basic inference memory estimation
* finish memory estimation
* fix bug
* finish memory estimation
* add part of index tracer
* finish basic index tracer
* add doc string
* add doc str
* polish code
* polish code
* update active log
* polish code
* add possible region search
* finish region search loop
* finish chunk define
* support new op
* rename index tracer
* finishi codegen on msa
* redesign index tracer, add source and change compute
* pass outproduct mean
* code format
* code format
* work with outerproductmean and msa
* code style
* code style
* code style
* code style
* change threshold
* support check_index_duplicate
* support index dupilictae and update loop
* support output
* update memory estimate
* optimise search
* fix layernorm
* move flow tracer
* refactor flow tracer
* format code
* refactor flow search
* code style
* adapt codegen to prepose node
* code style
* remove abandoned function
* remove flow tracer
* code style
* code style
* reorder nodes
* finish node reorder
* update run
* code style
* add chunk select class
* add chunk select
* code style
* add chunksize in emit, fix bug in reassgin shape
* code style
* turn off print mem
* add evoformer openfold init
* init openfold
* add benchmark
* add print
* code style
* code style
* init openfold
* update openfold
* align openfold
* use max_mem to control stratge
* update source add
* add reorder in mem estimator
* improve reorder efficeincy
* support ones_like, add prompt if fit mode search fail
* fix a bug in ones like, dont gen chunk if dim size is 1
* fix bug again
* update min memory stratege, reduce mem usage by 30%
* last version of benchmark
* refactor structure
* restruct dir
* update test
* rename
* take apart chunk code gen
* close mem and code print
* code format
* rename ambiguous variable
* seperate flow tracer
* seperate input node dim search
* seperate prepose_nodes
* seperate non chunk input
* seperate reorder
* rename
* ad reorder graph
* seperate trace flow
* code style
* code style
* fix typo
* set benchmark
* rename test
* update codegen test
* Fix state_dict key missing issue of the ZeroDDP (#2363)
* Fix state_dict output for ZeroDDP duplicated parameters
* Rewrite state_dict based on get_static_torch_model
* Modify get_static_torch_model to be compatible with the lower version (ZeroDDP)
* update codegen test
* update codegen test
* add chunk search test
* code style
* add available
* [hotfix] fix gpt gemini example (#2404)
* [hotfix] fix gpt gemini example
* [example] add new assertions
* remove autochunk_available
* [workflow] added nightly release to pypi (#2403)
* add comments
* code style
* add doc for search chunk
* [doc] updated readme regarding pypi installation (#2406)
* add doc for search
* [doc] updated kernel-related optimisers' docstring (#2385)
* [doc] updated kernel-related optimisers' docstring
* polish doc
* rename trace_index to trace_indice
* rename function from index to indice
* rename
* rename in doc
* [polish] polish code for get_static_torch_model (#2405)
* [gemini] polish code
* [testing] remove code
* [gemini] make more robust
* rename
* rename
* remove useless function
* [worfklow] added coverage test (#2399)
* [worfklow] added coverage test
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* add doc for trace indice
* [docker] updated Dockerfile and release workflow (#2410)
* add doc
* update doc
* add available
* change imports
* add test in import
* [workflow] refactored the example check workflow (#2411)
* [workflow] refactored the example check workflow
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* Update parallel_context.py (#2408)
* [hotfix] add DISTPAN argument for benchmark (#2412)
* change the benchmark config file
* change config
* revert config file
* rename distpan to distplan
* [workflow] added precommit check for code consistency (#2401)
* [workflow] added precommit check for code consistency
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* adapt new fx
* [workflow] added translation for non-english comments (#2414)
* [setup] refactored setup.py for dependency graph (#2413)
* change import
* update doc
* [workflow] auto comment if precommit check fails (#2417)
* [hotfix] add norm clearing for the overflow step (#2416)
* [examples] adding tflops to PaLM (#2365)
* [workflow]auto comment with test coverage report (#2419)
* [workflow]auto comment with test coverage report
* polish code
* polish yaml
* [doc] added documentation for CI/CD (#2420)
* [doc] added documentation for CI/CD
* polish markdown
* polish markdown
* polish markdown
* [example] removed duplicated stable diffusion example (#2424)
* [zero] add inference mode and its unit test (#2418)
* [workflow] report test coverage even if below threshold (#2431)
* [example] improved the clarity yof the example readme (#2427)
* [example] improved the clarity yof the example readme
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* [ddp] add is_ddp_ignored (#2434)
[ddp] rename to is_ddp_ignored
* [workflow] make test coverage report collapsable (#2436)
* [autoparallel] add shard option (#2423)
* [fx] allow native ckpt trace and codegen. (#2438)
* [cli] provided more details if colossalai run fail (#2442)
* [autoparallel] integrate device mesh initialization into autoparallelize (#2393)
* [autoparallel] integrate device mesh initialization into autoparallelize
* add megatron solution
* update gpt autoparallel examples with latest api
* adapt beta value to fit the current computation cost
* [zero] fix state_dict and load_state_dict for ddp ignored parameters (#2443)
* [ddp] add is_ddp_ignored
[ddp] rename to is_ddp_ignored
* [zero] fix state_dict and load_state_dict
* fix bugs
* [zero] update unit test for ZeroDDP
* [example] updated the hybrid parallel tutorial (#2444)
* [example] updated the hybrid parallel tutorial
* polish code
* [zero] add warning for ignored parameters (#2446)
* [example] updated large-batch optimizer tutorial (#2448)
* [example] updated large-batch optimizer tutorial
* polish code
* polish code
* [example] fixed seed error in train_dreambooth_colossalai.py (#2445)
* [workflow] fixed the on-merge condition check (#2452)
* [workflow] automated the compatiblity test (#2453)
* [workflow] automated the compatiblity test
* polish code
* [autoparallel] update binary elementwise handler (#2451)
* [autoparallel] update binary elementwise handler
* polish
* [workflow] automated bdist wheel build (#2459)
* [workflow] automated bdist wheel build
* polish workflow
* polish readme
* polish readme
* Fix False warning in initialize.py (#2456)
* Update initialize.py
* pre-commit run check
* [examples] update autoparallel tutorial demo (#2449)
* [examples] update autoparallel tutorial demo
* add test_ci.sh
* polish
* add conda yaml
* [cli] fixed hostname mismatch error (#2465)
* [example] integrate autoparallel demo with CI (#2466)
* [example] integrate autoparallel demo with CI
* polish code
* polish code
* polish code
* polish code
* [zero] low level optim supports ProcessGroup (#2464)
* [example] update vit ci script (#2469)
* [example] update vit ci script
* [example] update requirements
* [example] update requirements
* [example] integrate seq-parallel tutorial with CI (#2463)
* [zero] polish low level optimizer (#2473)
* polish pp middleware (#2476)
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
* [example] update gpt gemini example ci test (#2477)
* [zero] add unit test for low-level zero init (#2474)
* [workflow] fixed the skip condition of example weekly check workflow (#2481)
* [example] stable diffusion add roadmap
* add dummy test_ci.sh
* [example] stable diffusion add roadmap (#2482)
* [CI] add test_ci.sh for palm, opt and gpt (#2475)
* polish code
* [example] titans for gpt
* polish readme
* remove license
* polish code
* update readme
* [example] titans for gpt (#2484)
* [autoparallel] support origin activation ckpt on autoprallel system (#2468)
* [autochunk] support evoformer tracer (#2485)
support full evoformer tracer, which is a main module of alphafold. previously we just support a simplifed version of it.
1. support some evoformer's op in fx
2. support evoformer test
3. add repos for test code
* [example] fix requirements (#2488)
* [zero] add unit testings for hybrid parallelism (#2486)
* [hotfix] gpt example titans bug #2493
* polish code and fix dataloader bugs
* [hotfix] gpt example titans bug #2493 (#2494)
* [fx] allow control of ckpt_codegen init (#2498)
* [fx] allow control of ckpt_codegen init
Currently in ColoGraphModule, ActivationCheckpointCodeGen will be set automatically in __init__. But other codegen can't be set if so.
So I add an arg to control whether to set ActivationCheckpointCodeGen in __init__.
* code style
* [example] dreambooth example
* add test_ci.sh to dreambooth
* [autochunk] support autochunk on evoformer (#2497)
* Revert "Update parallel_context.py (#2408)"
This reverts commit 7d5640b9db
.
* add avg partition (#2483)
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
* [auto-chunk] support extramsa (#3) (#2504)
* [utils] lazy init. (#2148)
* [utils] lazy init.
* [utils] remove description.
* [utils] complete.
* [utils] finalize.
* [utils] fix names.
* [autochunk] support parsing blocks (#2506)
* [zero] add strict ddp mode (#2508)
* [zero] add strict ddp mode
* [polish] add comments for strict ddp mode
* [zero] fix test error
* [doc] update opt and tutorial links (#2509)
* [workflow] fixed changed file detection (#2515)
Co-authored-by: oahzxl <xuanlei.zhao@gmail.com>
Co-authored-by: eric8607242 <e0928021388@gmail.com>
Co-authored-by: HELSON <c2h214748@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: Haofan Wang <haofanwang.ai@gmail.com>
Co-authored-by: Jiarui Fang <fangjiarui123@gmail.com>
Co-authored-by: ZijianYY <119492445+ZijianYY@users.noreply.github.com>
Co-authored-by: YuliangLiu0306 <72588413+YuliangLiu0306@users.noreply.github.com>
Co-authored-by: Super Daniel <78588128+super-dainiu@users.noreply.github.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang97@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
Co-authored-by: oahzxl <43881818+oahzxl@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Fazzie-Maqianli <55798671+Fazziekey@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
This commit is contained in:
@@ -1,18 +1,20 @@
|
||||
for MODEL_TYPE in "gpt2_medium"; do
|
||||
for BATCH_SIZE in 16; do
|
||||
for GPUNUM in 1 2 4 8; do
|
||||
for TPDEGREE in 1 2 4 8; do
|
||||
if [ ${TPDEGREE} -gt ${GPUNUM} ]; then
|
||||
continue
|
||||
fi
|
||||
for PLACEMENT in "cpu" "auto"; do
|
||||
echo "****************** Begin ***************************"
|
||||
echo "* benchmrking MODEL_TYPE ${MODEL_TYPE} BS ${BATCH_SIZE} BS ${BS} GPUNUM ${GPUNUM} TPDEGREE ${TPDEGREE} PLACEMENT ${PLACEMENT}"
|
||||
MODEL_TYPE=${MODEL_TYPE} BATCH_SIZE=${BATCH_SIZE} GPUNUM=${GPUNUM} TPDEGREE=${TPDEGREE} PLACEMENT=${PLACEMENT} \
|
||||
bash ./gemini/run_gemini.sh
|
||||
echo "****************** Finished ***************************"
|
||||
echo ""
|
||||
echo ""
|
||||
for DISTPLAN in "colossalai"; do
|
||||
for BATCH_SIZE in 16; do
|
||||
for GPUNUM in 1 2 4 8; do
|
||||
for TPDEGREE in 1 2 4 8; do
|
||||
if [ ${TPDEGREE} -gt ${GPUNUM} ]; then
|
||||
continue
|
||||
fi
|
||||
for PLACEMENT in "cpu" "auto"; do
|
||||
echo "****************** Begin ***************************"
|
||||
echo "+ benchmrking MODEL ${MODEL_TYPE} DISTPLAN ${DISTPLAN} GPU ${GPUNUM} BS ${BATCH_SIZE} TP ${TPDEGREE} POLICY ${PLACEMENT}"
|
||||
MODEL_TYPE=${MODEL_TYPE} DISTPLAN=${DISTPLAN} BATCH_SIZE=${BATCH_SIZE} GPUNUM=${GPUNUM} TPDEGREE=${TPDEGREE} PLACEMENT=${PLACEMENT} \
|
||||
bash ./run_gemini.sh
|
||||
echo "****************** Finished ***************************"
|
||||
echo ""
|
||||
echo ""
|
||||
done
|
||||
done
|
||||
done
|
||||
done
|
||||
|
@@ -53,6 +53,14 @@ def gpt2_24b(checkpoint=True):
|
||||
return GPTLMModel(hidden_size=8192, num_layers=30, num_attention_heads=16, checkpoint=checkpoint)
|
||||
|
||||
|
||||
def gpt2_30b(checkpoint=True):
|
||||
return GPTLMModel(hidden_size=8192, num_layers=37, num_attention_heads=16, checkpoint=checkpoint)
|
||||
|
||||
|
||||
def gpt2_40b(checkpoint=True):
|
||||
return GPTLMModel(hidden_size=8192, num_layers=50, num_attention_heads=16, checkpoint=checkpoint)
|
||||
|
||||
|
||||
def model_builder(model_size: str) -> callable:
|
||||
if model_size == "gpt2_medium":
|
||||
return gpt2_medium
|
||||
@@ -66,6 +74,10 @@ def model_builder(model_size: str) -> callable:
|
||||
return gpt2_20b
|
||||
elif model_size == "gpt2_24b":
|
||||
return gpt2_24b
|
||||
elif model_size == "gpt2_30b":
|
||||
return gpt2_30b
|
||||
elif model_size == "gpt2_40b":
|
||||
return gpt2_40b
|
||||
else:
|
||||
raise TypeError(f"model_builder {model_size}")
|
||||
|
||||
|
2
examples/language/gpt/gemini/requirements.txt
Normal file
2
examples/language/gpt/gemini/requirements.txt
Normal file
@@ -0,0 +1,2 @@
|
||||
colossalai >= 0.1.12
|
||||
torch >= 1.8.1
|
@@ -1,15 +1,15 @@
|
||||
set -x
|
||||
# distplan in ["colossalai", "zero1", "zero2", "torch_ddp", "torch_zero"]
|
||||
export DISTPAN=${DISTPAN:-"colossalai"}
|
||||
export DISTPLAN=${DISTPLAN:-"colossalai"}
|
||||
|
||||
# The following options only valid when DISTPAN="colossalai"
|
||||
# The following options only valid when DISTPLAN="colossalai"
|
||||
export GPUNUM=${GPUNUM:-1}
|
||||
export TPDEGREE=${TPDEGREE:-1}
|
||||
export PLACEMENT=${PLACEMENT:-"cpu"}
|
||||
export USE_SHARD_INIT=${USE_SHARD_INIT:-False}
|
||||
export BATCH_SIZE=${BATCH_SIZE:-16}
|
||||
export MODEL_TYPE=${MODEL_TYPE:-"gpt2_medium"}
|
||||
|
||||
export TRAIN_STEP=${TRAIN_STEP:-10}
|
||||
# export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
|
||||
mkdir -p gemini_logs
|
||||
@@ -20,5 +20,6 @@ torchrun --standalone --nproc_per_node=${GPUNUM} ./train_gpt_demo.py \
|
||||
--batch_size=${BATCH_SIZE} \
|
||||
--placement=${PLACEMENT} \
|
||||
--shardinit=${USE_SHARD_INIT} \
|
||||
--distplan=${DISTPAN} \
|
||||
2>&1 | tee ./gemini_logs/${MODEL_TYPE}_${DISTPAN}_gpu_${GPUNUM}_bs_${BATCH_SIZE}_tp_${TPDEGREE}_${PLACEMENT}.log
|
||||
--distplan=${DISTPLAN} \
|
||||
--train_step=${TRAIN_STEP} \
|
||||
2>&1 | tee ./gemini_logs/${MODEL_TYPE}_${DISTPLAN}_gpu_${GPUNUM}_bs_${BATCH_SIZE}_tp_${TPDEGREE}_${PLACEMENT}.log
|
||||
|
35
examples/language/gpt/gemini/test_ci.sh
Normal file
35
examples/language/gpt/gemini/test_ci.sh
Normal file
@@ -0,0 +1,35 @@
|
||||
set -x
|
||||
$(cd `dirname $0`;pwd)
|
||||
export TRAIN_STEP=4
|
||||
|
||||
for MODEL_TYPE in "gpt2_medium"; do
|
||||
for DISTPLAN in "colossalai"; do
|
||||
for BATCH_SIZE in 2; do
|
||||
for GPUNUM in 1 4; do
|
||||
for TPDEGREE in 1 2; do
|
||||
if [ ${TPDEGREE} -gt ${GPUNUM} ]; then
|
||||
continue
|
||||
fi
|
||||
for PLACEMENT in "cpu" "auto"; do
|
||||
MODEL_TYPE=${MODEL_TYPE} DISTPLAN=${DISTPLAN} BATCH_SIZE=${BATCH_SIZE} GPUNUM=${GPUNUM} TPDEGREE=${TPDEGREE} PLACEMENT=${PLACEMENT} \
|
||||
bash ./run_gemini.sh
|
||||
done
|
||||
done
|
||||
done
|
||||
done
|
||||
done
|
||||
|
||||
for DISTPLAN in "zero1" "zero2"; do
|
||||
for BATCH_SIZE in 2; do
|
||||
for GPUNUM in 1 4; do
|
||||
for TPDEGREE in 1; do
|
||||
if [ ${TPDEGREE} -gt ${GPUNUM} ]; then
|
||||
continue
|
||||
fi
|
||||
MODEL_TYPE=${MODEL_TYPE} DISTPLAN=${DISTPLAN} BATCH_SIZE=${BATCH_SIZE} GPUNUM=${GPUNUM} TPDEGREE=${TPDEGREE}\
|
||||
bash ./run_gemini.sh
|
||||
done
|
||||
done
|
||||
done
|
||||
done
|
||||
done
|
@@ -65,6 +65,13 @@ def parse_args():
|
||||
default="gpt2_medium",
|
||||
help="model model scale",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--train_step",
|
||||
type=int,
|
||||
default=10,
|
||||
help="training iterations for test",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
@@ -180,17 +187,18 @@ def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup):
|
||||
|
||||
|
||||
# Gemini + ZeRO DDP
|
||||
def build_gemini(model: torch.nn.Module, pg: ProcessGroup, placement_policy: str = "auto"):
|
||||
def build_gemini(model: torch.nn.Module, pg: ProcessGroup, placement_policy: str = "auto", ddp_flag: bool = True):
|
||||
fp16_init_scale = 2**5
|
||||
gpu_margin_mem_ratio_for_auto = 0
|
||||
|
||||
if version.parse(CAI_VERSION) > version.parse("0.1.10"):
|
||||
model = GeminiDDP(model,
|
||||
strict_ddp_mode=ddp_flag,
|
||||
device=get_current_device(),
|
||||
placement_policy=placement_policy,
|
||||
pin_memory=True,
|
||||
hidden_dim=model.config.n_embd,
|
||||
search_range_mb=64)
|
||||
search_range_mb=128)
|
||||
# configure the const policy
|
||||
if placement_policy == 'const':
|
||||
model.gemini_manager._placement_policy.set_const_memory_boundary(2 * 1024)
|
||||
@@ -236,7 +244,8 @@ def main():
|
||||
SEQ_LEN = 1024
|
||||
VOCAB_SIZE = 50257
|
||||
|
||||
NUM_STEPS = 10
|
||||
NUM_STEPS = args.train_step
|
||||
|
||||
WARMUP_STEPS = 1
|
||||
assert WARMUP_STEPS < NUM_STEPS, "warmup steps should smaller than the total steps"
|
||||
assert (NUM_STEPS - WARMUP_STEPS) % 2 == 1, "the number of valid steps should be odd to take the median "
|
||||
@@ -270,14 +279,17 @@ def main():
|
||||
|
||||
tp_pg = ProcessGroup(tp_degree=args.tp_degree)
|
||||
# Tensor Parallelism (TP)
|
||||
tensor_parallelize(model, tp_pg)
|
||||
# You should notice that v0.1.10 is not compatible with TP degree > 1
|
||||
if args.tp_degree > 1:
|
||||
tensor_parallelize(model, tp_pg)
|
||||
|
||||
# build a Gemini model and a highly optimized cpu optimizer
|
||||
# Gemini + ZeRO DP, Note it must be used after TP
|
||||
model, optimizer = build_gemini(model, tp_pg, args.placement)
|
||||
model, optimizer = build_gemini(model, tp_pg, args.placement, args.tp_degree == 1)
|
||||
|
||||
logger.info(get_mem_info(prefix='After init optim, '), ranks=[0])
|
||||
else:
|
||||
assert args.tp_degree == 1, "The degree of TP should be 1 for DDP examples."
|
||||
model = model_builder(args.model_type)(checkpoint=True).cuda()
|
||||
|
||||
if args.distplan.startswith("torch"):
|
||||
@@ -288,12 +300,17 @@ def main():
|
||||
from torch.distributed.optim import ZeroRedundancyOptimizer
|
||||
optimizer = ZeroRedundancyOptimizer(model.parameters(), optimizer_class=torch.optim.Adam, lr=0.01)
|
||||
elif args.distplan.startswith("zero"):
|
||||
partition_flag = args.distplan == "zero2"
|
||||
model = model.half()
|
||||
partition_flag = (args.distplan == "zero2")
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
|
||||
optimizer = LowLevelZeroOptimizer(optimizer,
|
||||
overlap_communication=True,
|
||||
partition_grad=partition_flag,
|
||||
verbose=True)
|
||||
|
||||
optimizer = LowLevelZeroOptimizer(
|
||||
optimizer,
|
||||
reduce_bucket_size=12 * 1024 * 1024,
|
||||
overlap_communication=True,
|
||||
partition_grad=partition_flag,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
# model is shared after TP
|
||||
numel = get_model_size(model)
|
||||
|
Reference in New Issue
Block a user