upgrade colossal-chat support tp_group>1, add sp for sft

This commit is contained in:
YeAnbang
2024-05-27 05:55:57 +00:00
parent 73e88a5553
commit 7a7e86987d
33 changed files with 7574 additions and 105 deletions

View File

@@ -248,9 +248,9 @@ class StatefulDistributedSampler(DistributedSampler):
shuffle: bool = True,
seed: int = 0,
drop_last: bool = False,
use_tp: Optional[bool] = False,
tp_size: int = 1,
) -> None:
if not use_tp:
if not tp_size>1:
super().__init__(
dataset=dataset,
num_replicas=num_replicas,
@@ -261,14 +261,16 @@ class StatefulDistributedSampler(DistributedSampler):
)
else:
# adapted from https://github.com/pytorch/pytorch/blob/4979f9c0d72490970e2019bb1d2284f83d93f76b/torch/utils/data/distributed.py#L62
# TODO: support tp_group>1. will fix it later
num_replicas = 1
if rank is None:
rank = dist.get_rank()
world_size = dist.get_world_size()
dp_size = world_size // tp_size # data parallel size
dp_rank = int(rank / tp_size) # data parallel rank
if rank < 0:
raise ValueError(f"Invalid rank {rank}, rank should be in the interval [0, 0]")
self.dataset = dataset
self.num_replicas = num_replicas
self.dp_rank = dp_rank
self.rank = rank
self.epoch = 0
self.drop_last = drop_last
@@ -287,10 +289,10 @@ class StatefulDistributedSampler(DistributedSampler):
self.shuffle = shuffle
self.seed = seed
self.start_index = 0
self.use_tp = use_tp
self.tp_size = tp_size
def __iter__(self) -> Iterator:
if self.use_tp:
if self.tp_size > 1:
# TODO Add support for tp_group not equal to 1
pass
# adpated from https://github.com/pytorch/pytorch/blob/4979f9c0d72490970e2019bb1d2284f83d93f76b/torch/utils/data/distributed.py#L96
@@ -316,10 +318,9 @@ class StatefulDistributedSampler(DistributedSampler):
# subsample
indices = indices[
: self.total_size : self.num_replicas
self.dp_rank: self.dp_rank + self.total_size : self.num_replicas
] # num_replicas=tp_group=1, we only support tp_group==1 for now
assert len(indices) == self.num_samples
return iter(indices)
else:
@@ -345,7 +346,7 @@ def setup_distributed_dataloader(
num_workers: int = 0,
collate_fn: Callable[[Sequence[Dict[str, Union[str, List[int]]]]], Dict[str, torch.Tensor]] = None,
process_group: Optional[ProcessGroup] = None,
use_tp: Optional[bool] = False,
tp_size: Optional[int] = 1,
**kwargs,
) -> DataLoader:
"""
@@ -353,14 +354,16 @@ def setup_distributed_dataloader(
"""
_kwargs = kwargs.copy()
process_group = process_group or _get_default_group()
# world_size = tp_size * pp_size
assert process_group.size()%tp_size == 0, f"process_group.size()={process_group.size()} must be divisible by tp_size={tp_size}"
sampler = StatefulDistributedSampler(
dataset=dataset,
num_replicas=process_group.size() if not use_tp else 1,
num_replicas=int(process_group.size()/tp_size),
rank=process_group.rank(),
shuffle=shuffle,
seed=seed,
drop_last=drop_last,
use_tp=use_tp,
tp_size=tp_size,
)
# Deterministic dataloader