mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2026-01-29 21:49:54 +00:00
[zero] add sharded grad and refactor grad hooks for ShardedModel (#287)
This commit is contained in:
@@ -1,9 +1,10 @@
|
||||
from functools import partial
|
||||
from operator import imod
|
||||
from colossalai.utils import checkpoint
|
||||
import torch.nn as nn
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
||||
from colossalai.utils import checkpoint
|
||||
|
||||
LOGGER = get_dist_logger()
|
||||
|
||||
@@ -34,6 +35,7 @@ CONFIG = dict(
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def checkpoint_wrapper(module, enable=True):
|
||||
if enable:
|
||||
module.forward = partial(checkpoint, module.forward)
|
||||
@@ -61,6 +63,7 @@ class Net(nn.Module):
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
|
||||
def allclose(tensor_a: torch.Tensor, tensor_b: torch.Tensor, loose=False) -> bool:
|
||||
if loose:
|
||||
return torch.allclose(tensor_a, tensor_b, atol=1e-3, rtol=1e-3)
|
||||
@@ -72,7 +75,8 @@ def check_grads(model, zero_model, loose=False):
|
||||
zero_grad = zero_p.grad.clone().to(p.device)
|
||||
assert p.grad.dtype == zero_grad.dtype
|
||||
assert allclose(p.grad, zero_grad, loose=loose)
|
||||
LOGGER.info(torch.sum(p.grad-zero_grad))
|
||||
LOGGER.info(torch.sum(p.grad - zero_grad))
|
||||
|
||||
|
||||
def check_params(model, zero_model, loose=False):
|
||||
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
|
||||
@@ -80,3 +84,30 @@ def check_params(model, zero_model, loose=False):
|
||||
assert p.dtype == zero_p.dtype
|
||||
assert allclose(p, zero_p, loose=loose)
|
||||
|
||||
|
||||
def check_grads_padding(model, zero_model, loose=False):
|
||||
rank = dist.get_rank()
|
||||
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
|
||||
zero_grad = zero_p.grad.clone().to(p.device)
|
||||
chunks = torch.flatten(p.grad).chunk(dist.get_world_size())
|
||||
if rank >= len(chunks):
|
||||
continue
|
||||
grad = chunks[rank]
|
||||
if zero_grad.size(0) > grad.size(0):
|
||||
zero_grad = zero_grad[:grad.size(0)]
|
||||
assert grad.dtype == zero_grad.dtype
|
||||
assert allclose(grad, zero_grad, loose=loose)
|
||||
|
||||
|
||||
def check_params_padding(model, zero_model, loose=False):
|
||||
rank = dist.get_rank()
|
||||
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
|
||||
zero_p = zero_p.clone().to(p.device)
|
||||
chunks = torch.flatten(p).chunk(dist.get_world_size())
|
||||
if rank >= len(chunks):
|
||||
continue
|
||||
p = chunks[rank]
|
||||
if zero_p.size(0) > p.size(0):
|
||||
zero_p = zero_p[:p.size(0)]
|
||||
assert p.dtype == zero_p.dtype
|
||||
assert allclose(p, zero_p, loose=loose)
|
||||
|
||||
Reference in New Issue
Block a user