[chat]: update rm, add wandb and fix bugs (#4471)

* feat: modify forward fn of critic and reward model

* feat: modify calc_action_log_probs

* to: add wandb in sft and rm trainer

* feat: update train_sft

* feat: update train_rm

* style: modify type annotation and add warning

* feat: pass tokenizer to ppo trainer

* to: modify trainer base and maker base

* feat: add wandb in ppo trainer

* feat: pass tokenizer to generate

* test: update generate fn tests

* test: update train tests

* fix: remove action_mask

* feat: remove unused code

* fix: fix wrong ignore_index

* fix: fix mock tokenizer

* chore: update requirements

* revert: modify make_experience

* fix: fix inference

* fix: add padding side

* style: modify _on_learn_batch_end

* test: use mock tokenizer

* fix: use bf16 to avoid overflow

* fix: fix workflow

* [chat] fix gemini strategy

* [chat] fix

* sync: update colossalai strategy

* fix: fix args and model dtype

* fix: fix checkpoint test

* fix: fix requirements

* fix: fix missing import and wrong arg

* fix: temporarily skip gemini test in stage 3

* style: apply pre-commit

* fix: temporarily skip gemini test in stage 1&2

---------

Co-authored-by: Mingyan Jiang <1829166702@qq.com>
This commit is contained in:
Wenhao Chen
2023-09-20 15:53:58 +08:00
committed by GitHub
parent 07c2e3d09c
commit 7b9b86441f
36 changed files with 382 additions and 332 deletions

View File

@@ -25,7 +25,7 @@ class Actor(LoRAModule):
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
**model_kwargs, # HACK: `generate` method may pass more kwargs
**model_kwargs,
) -> torch.Tensor:
"""Returns model output."""
output = self.model(input_ids, attention_mask=attention_mask, **model_kwargs)

View File

@@ -1,10 +1,7 @@
from typing import Optional
import torch
import torch.nn as nn
from ..lora import LoRAModule
from ..utils import masked_mean
class Critic(LoRAModule):
@@ -19,37 +16,19 @@ class Critic(LoRAModule):
"""
def __init__(
self,
model: nn.Module,
value_head: nn.Module,
lora_rank: int = 0,
lora_train_bias: str = "none",
use_action_mask: bool = False,
self, model: nn.Module, value_head: nn.Module, lora_rank: int = 0, lora_train_bias: str = "none"
) -> None:
super().__init__(lora_rank=lora_rank, lora_train_bias=lora_train_bias)
self.model = model
self.value_head = value_head
self.use_action_mask = use_action_mask
self.convert_to_lora()
def forward(
self,
sequences: torch.LongTensor,
action_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
def forward(self, sequences: torch.LongTensor, attention_mask: torch.Tensor) -> torch.Tensor:
outputs = self.model(sequences, attention_mask=attention_mask)
last_hidden_states = outputs["last_hidden_state"]
values = self.value_head(last_hidden_states).squeeze(-1)
if action_mask is not None and self.use_action_mask:
num_actions = action_mask.size(1)
prompt_mask = attention_mask[:, :-num_actions]
values = values[:, :-num_actions]
value = masked_mean(values, prompt_mask, dim=1)
return value
values = values[:, :-1]
value = values.mean(dim=1)
return value
sequence_lengths = torch.max(attention_mask * torch.arange(sequences.size(1), device=sequences.device), dim=1)[
0
]
sequence_hidden_states = last_hidden_states[torch.arange(last_hidden_states.size(0)), sequence_lengths]
values = self.value_head(sequence_hidden_states).squeeze(1) # ensure shape is (B, )
return values

View File

@@ -35,9 +35,12 @@ class RewardModel(LoRAModule):
else:
self.value_head = nn.Linear(model.config.n_embd, 1)
def forward(self, sequences: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
def forward(self, sequences: torch.LongTensor, attention_mask: torch.Tensor) -> torch.Tensor:
outputs = self.model(sequences, attention_mask=attention_mask)
last_hidden_states = outputs["last_hidden_state"]
values = self.value_head(last_hidden_states)[:, :-1]
value = values.mean(dim=1).squeeze(1) # ensure shape is (B)
return value
sequence_lengths = torch.max(attention_mask * torch.arange(sequences.size(1), device=sequences.device), dim=1)[
0
]
sequence_hidden_states = last_hidden_states[torch.arange(last_hidden_states.size(0)), sequence_lengths]
values = self.value_head(sequence_hidden_states).squeeze(1) # ensure shape is (B, )
return values

View File

@@ -2,6 +2,7 @@ from typing import Any, Callable, Optional
import torch
import torch.distributed as dist
from transformers import PreTrainedTokenizer
from .base import Actor
@@ -63,8 +64,8 @@ def _sample(
)
outputs = model(**model_inputs)
# NOTE: this is correct only in left padding mode
next_token_logits = outputs["logits"][:, -1, :]
# pre-process distribution
next_token_logits = logits_processor(input_ids, next_token_logits)
# sample
probs = torch.softmax(next_token_logits, dim=-1, dtype=torch.float)
@@ -72,8 +73,7 @@ def _sample(
# finished sentences should have their next token be a padding token
if eos_token_id is not None:
if pad_token_id is None:
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
assert pad_token_id is not None, "If `eos_token_id` is defined, make sure that `pad_token_id` is defined."
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
# update generated ids, model inputs for next step
@@ -96,12 +96,11 @@ def _sample(
def generate(
model: Actor,
input_ids: torch.Tensor,
tokenizer: PreTrainedTokenizer,
max_length: int,
num_beams: int = 1,
do_sample: bool = True,
early_stopping: bool = False,
eos_token_id: Optional[int] = None,
pad_token_id: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
@@ -118,14 +117,13 @@ def generate(
num_beams (int, optional): number of beams. Defaults to 1.
do_sample (bool, optional): whether to do sample. Defaults to True.
early_stopping (bool, optional): if True, the sequence length may be smaller than max_length due to finding eos. Defaults to False.
eos_token_id (Optional[int], optional): end of sequence token id. Defaults to None.
pad_token_id (Optional[int], optional): pad token id. Defaults to None.
top_k (Optional[int], optional): the number of highest probability vocabulary tokens to keep for top-k-filtering. Defaults to None.
top_p (Optional[float], optional): If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation. Defaults to None.
temperature (Optional[float], optional): The value used to module the next token probabilities. Defaults to None.
prepare_inputs_fn (Optional[Callable[[torch.Tensor, Any], dict]], optional): Function to preprocess model inputs. Arguments of this function should be input_ids and model_kwargs. Defaults to None.
update_model_kwargs_fn (Optional[Callable[[dict, Any], dict]], optional): Function to update model_kwargs based on outputs. Arguments of this function should be outputs and model_kwargs. Defaults to None.
"""
assert tokenizer.padding_side == "left", "Current generation only supports left padding."
is_greedy_gen_mode = (num_beams == 1) and do_sample is False
is_sample_gen_mode = (num_beams == 1) and do_sample is True
is_beam_gen_mode = (num_beams > 1) and do_sample is False
@@ -139,8 +137,8 @@ def generate(
input_ids,
max_length,
early_stopping=early_stopping,
eos_token_id=eos_token_id,
pad_token_id=pad_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
top_k=top_k,
top_p=top_p,
temperature=temperature,

View File

@@ -13,6 +13,7 @@ class GPTLMLoss(nn.Module):
def __init__(self):
super().__init__()
# NOTE: default ignore_index is -100, which is equal to IGNORE_INDEX in sft_dataset.py
self.loss = nn.CrossEntropyLoss()
def forward(self, logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:

View File

@@ -46,18 +46,17 @@ def _log_probs_from_logits(logits: torch.Tensor, labels: torch.Tensor) -> torch.
return log_probs_labels.squeeze(-1)
def calc_action_log_probs(output: torch.Tensor, sequences: torch.LongTensor, num_actions: int) -> torch.Tensor:
def calc_action_log_probs(logits: torch.Tensor, sequences: torch.LongTensor, num_actions: int) -> torch.Tensor:
"""Calculate action log probs.
Args:
output (torch.Tensor): Output tensor of Actor.forward.
output (torch.Tensor): Output tensor of Actor.forward.logits.
sequences (torch.LongTensor): Input sequences.
num_actions (int): Number of actions.
Returns:
torch.Tensor: Action log probs.
"""
logits = output["logits"]
log_probs = _log_probs_from_logits(logits[:, :-1, :], sequences[:, 1:])
return log_probs[:, -num_actions:]