mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-22 18:09:06 +00:00
[chat]: update rm, add wandb and fix bugs (#4471)
* feat: modify forward fn of critic and reward model * feat: modify calc_action_log_probs * to: add wandb in sft and rm trainer * feat: update train_sft * feat: update train_rm * style: modify type annotation and add warning * feat: pass tokenizer to ppo trainer * to: modify trainer base and maker base * feat: add wandb in ppo trainer * feat: pass tokenizer to generate * test: update generate fn tests * test: update train tests * fix: remove action_mask * feat: remove unused code * fix: fix wrong ignore_index * fix: fix mock tokenizer * chore: update requirements * revert: modify make_experience * fix: fix inference * fix: add padding side * style: modify _on_learn_batch_end * test: use mock tokenizer * fix: use bf16 to avoid overflow * fix: fix workflow * [chat] fix gemini strategy * [chat] fix * sync: update colossalai strategy * fix: fix args and model dtype * fix: fix checkpoint test * fix: fix requirements * fix: fix missing import and wrong arg * fix: temporarily skip gemini test in stage 3 * style: apply pre-commit * fix: temporarily skip gemini test in stage 1&2 --------- Co-authored-by: Mingyan Jiang <1829166702@qq.com>
This commit is contained in:
@@ -41,13 +41,13 @@ def get_actor_from_args(model: str, pretrained: str = None, config=None, lora_ra
|
||||
|
||||
def get_critic_from_args(model: str, pretrained: str = None, config=None, lora_rank=0):
|
||||
if model == "gpt2":
|
||||
critic = GPTCritic(pretrained=pretrained, lora_rank=lora_rank, config=config, use_action_mask=True)
|
||||
critic = GPTCritic(pretrained=pretrained, lora_rank=lora_rank, config=config)
|
||||
elif model == "bloom":
|
||||
critic = BLOOMCritic(pretrained=pretrained, lora_rank=lora_rank, config=config, use_action_mask=True)
|
||||
critic = BLOOMCritic(pretrained=pretrained, lora_rank=lora_rank, config=config)
|
||||
elif model == "opt":
|
||||
critic = OPTCritic(pretrained=pretrained, lora_rank=lora_rank, config=config, use_action_mask=True)
|
||||
critic = OPTCritic(pretrained=pretrained, lora_rank=lora_rank, config=config)
|
||||
elif model == "llama":
|
||||
critic = LlamaCritic(pretrained=pretrained, lora_rank=lora_rank, config=config, use_action_mask=True)
|
||||
critic = LlamaCritic(pretrained=pretrained, lora_rank=lora_rank, config=config)
|
||||
else:
|
||||
raise ValueError(f'Unsupported reward model "{model}"')
|
||||
return critic
|
||||
|
Reference in New Issue
Block a user