[feat] GRPO with distributed implementation (#6230)

* add reward related function

* add simple grpo

* update grpo

* polish

* modify data loader

* grpo consumer

* update loss

* update reward fn

* update example

* update loader

* add algo selection

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add save

* update select algo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update grpo

* update reward fn

* update reward

* fix reward score

* add response length

* detach

* fix tp bug

* fix consumer

* convert to 8 generation

* print results

* setup update

* fix transformers backend

* [Feature] Support Distributed LogProb for GRPO Training (#6247)

* [fix] fix qwen VocabParallelLMHead1D and gather output

* fix tp bug

* fix consumer

* [feat] Support Distributed LogProb for GRPO Training

* [fix] fix loss func

* [fix] fix log prob plugin

* [fix] fix qwen modeling param

* [fix] rm comments

* [fix] rm hard-code;fix non-dist version

* [fix] fix test file param name and benchmark tp gather output=True/False

* [fix] rm non-dist version in dist log prob

* [fix] fix comments

* [fix] fix dis log prob plugin

* [fix] fix test case

* [fix] fix qwen VocabParallelLMHead1D and gather output

* [fix] fix DistLogProb comments

* [fix] restore tp size

* [fix] fix comments

* [fix] fix comment; fix LogSoftmax usage

---------

Co-authored-by: Tong Li <tong.li35271158@gmail.com>

* fix vllm

* fix logprob, add filtering, temperature annealing, lr descent

* simplify vllm preprocessing input ids

* update logging

* [feat] add microbatch forwarding (#6251)

* add microbatch forwarding

* fix forward microbatch

* fix producer OOM

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* change project name

* fix temperature annealing

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* address conversation

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Distributed RLHF] Integration of PP (#6257)

* update help information

* update style

* fix

* minor fix

* support PP training

* add pp support

* remove unused code

* address conversation

---------

Co-authored-by: Tong Li <tong.li35271158@gmail.com>

* [hot-fix] Fix memory leakage bug, support TP+PP (#6258)

* update help information

* update style

* fix

* minor fix

* support PP training

* add pp support

* remove unused code

* address conversation

* fix memory leakage support tp+pp

* move empty cache

* move empty cache

---------

Co-authored-by: Tong Li <tong.li35271158@gmail.com>

---------

Co-authored-by: Tong Li <tong.li35271158@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
This commit is contained in:
Tong Li
2025-04-21 10:43:49 +08:00
committed by GitHub
parent 2bb71c6248
commit 7bb7e80476
19 changed files with 1264 additions and 64 deletions

View File

@@ -1,10 +1,14 @@
import copy
from typing import Any, Dict, Optional
import ray
from .consumer import SimpleConsumer
from .grpo_consumer import GRPOConsumer, GRPOEvalConsumer
from .producer import SimpleProducer
ALGO_MAP = {"Simple": SimpleConsumer, "GRPO": GRPOConsumer, "EvalGRPO": GRPOEvalConsumer}
def get_jsonl_size_fast(path: str) -> int:
with open(path) as f:
@@ -30,6 +34,7 @@ def launch_distributed(
inference_microbatch_size: int,
train_batch_size: int,
train_microbatch_size: int,
train_minibatch_size: int,
dataset_config: Dict[str, Any],
dataloaders_config: Dict[str, Any],
inference_model_config: Dict[str, Any],
@@ -38,9 +43,18 @@ def launch_distributed(
plugin_config: Dict[str, Any],
tokenizer_config: Optional[Dict[str, Any]] = None,
inference_backend: str = "transformers",
num_generations: int = 8,
master_addr: str = "localhost",
master_port: int = 29500,
core_algo: str = "GRPO",
project_name: Optional[str] = None,
):
if core_algo not in ALGO_MAP:
raise NotImplementedError(f"{core_algo} is not supported yet.")
else:
core_consumer = ALGO_MAP.get(core_algo, SimpleConsumer)
train_dp_size = get_dp_size_fast(num_producers, plugin_config)
assert (inference_batch_size * num_producers) % (train_batch_size * train_dp_size) == 0
@@ -65,10 +79,17 @@ def launch_distributed(
tokenizer_config=tokenizer_config,
microbatch_size=inference_microbatch_size,
backend=inference_backend,
num_generations=num_generations,
)
procs.append(producer)
generate_config_consumer = copy.deepcopy(generate_config)
generate_config_consumer.update(
dict(
backend=inference_backend,
)
)
for i in range(num_consumer_procs):
consumer = SimpleConsumer.options(num_gpus=1).remote(
consumer = core_consumer.options(num_gpus=1).remote(
num_producers=num_producers,
num_episodes=num_episodes,
rank=i,
@@ -80,7 +101,15 @@ def launch_distributed(
batch_size=train_batch_size,
model_config=train_model_config,
plugin_config=plugin_config,
microbatch_size=train_microbatch_size,
microbatch_size=train_minibatch_size,
generate_config=generate_config_consumer,
training_config={
"filter_range": [0.05, 9.0],
"lr": 1e-6,
"train_microbatch_size": train_microbatch_size,
},
num_generations=num_generations,
project_name=project_name,
)
procs.append(consumer)
ray.get([p.setup.remote() for p in procs])