mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-02 01:28:31 +00:00
[autoparallel] add torch.nn.ReLU metainfo (#1868)
* [fx] metainfo class for auto parallel * [fx] add unit test for linear metainfo * [fx] fix bwd param for linear * [fx] modify unit test * [fx] modify unit test * [fx] modify import * [fx] modify import * [fx] modify import * [fx] move meta profiler to auto parallel * [fx] add conv metainfo class * [fx] restore profiler * [fx] restore meta profiler * [autoparallel] modify unit test * [fx] modify unit test * [autoparallel] add batchnorm metainfo class * [autoparallel] fix batchnorm unit test function declaration * [fx] restore profiler * [fx] add relu metainfo class * [fx] restore profiler * [autoparallel] modify metainfo input
This commit is contained in:
5
colossalai/auto_parallel/meta_profiler/constants.py
Normal file
5
colossalai/auto_parallel/meta_profiler/constants.py
Normal file
@@ -0,0 +1,5 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
# list of inplace operations
|
||||
INPLACE_MODULE = [nn.ReLU]
|
@@ -1,3 +1,4 @@
|
||||
from .activation import *
|
||||
from .conv import *
|
||||
from .linear import *
|
||||
from .norm import *
|
||||
|
@@ -0,0 +1,68 @@
|
||||
from typing import List, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
|
||||
from colossalai.fx.profiler.memory_utils import activation_size
|
||||
from colossalai.fx.profiler.opcount import flop_mapping
|
||||
|
||||
from ..registry import meta_register
|
||||
|
||||
__all__ = ["relu_meta_info"]
|
||||
|
||||
|
||||
@meta_register.register(torch.nn.ReLU)
|
||||
def relu_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
||||
"""torch.nn.ReLU metainfo generator
|
||||
The aten graph of torch.nn.ReLU is
|
||||
graph():
|
||||
%input_2 : [#users=1] = placeholder[target=placeholder](default=)
|
||||
%relu_default : [#users=2] = call_function[target=torch.ops.aten.relu.default](args = (%input_2,), kwargs = {})
|
||||
%zeros_like_default : [#users=1] = call_function[target=torch.ops.aten.zeros_like.default](args = (%relu_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
|
||||
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%relu_default,), kwargs = {})
|
||||
%threshold_backward_default : [#users=1] = call_function[target=torch.ops.aten.threshold_backward.default](args = (%zeros_like_default, %detach_default, None), kwargs = {})
|
||||
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%threshold_backward_default,), kwargs = {})
|
||||
%detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {})
|
||||
|
||||
Returns:
|
||||
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
|
||||
"""
|
||||
|
||||
input_tensor = next(filter(lambda x: x.type == OperationDataType.ARG, args)).data
|
||||
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
|
||||
inplace = kwargs.get("inplace", False)
|
||||
|
||||
# construct input args for forward
|
||||
fwd_in_args = [input_tensor]
|
||||
|
||||
# construct input args for backward
|
||||
bwd_in_args = [output_tensor]
|
||||
|
||||
# calculate cost
|
||||
# the fwd op with compute cost is relu.default
|
||||
# the bwd op with compute cost is threshold_backward
|
||||
|
||||
# calculate compute cost
|
||||
fwd_compute_cost = flop_mapping[torch.ops.aten.relu.default](fwd_in_args, (output_tensor,))
|
||||
bwd_compute_cost = flop_mapping[torch.ops.aten.threshold_backward.default](bwd_in_args, (input_tensor,))
|
||||
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
|
||||
|
||||
# calculate memory cost
|
||||
# NOTE: the inplace ReLU don't have forward memory cost
|
||||
fwd_memory_cost = MemoryCost(activation=0 if inplace else activation_size(output_tensor),
|
||||
parameter=0,
|
||||
temp=0,
|
||||
buffer=0)
|
||||
|
||||
bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor), parameter=0, temp=0, buffer=0)
|
||||
|
||||
# total cost is the sum of forward and backward cost
|
||||
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
|
||||
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
|
||||
|
||||
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
|
||||
|
||||
# store fwd_in
|
||||
fwd_in = [input_tensor]
|
||||
|
||||
return compute_cost, memory_cost, fwd_in
|
@@ -22,7 +22,7 @@ __all__ = ['convnd_meta_info']
|
||||
@meta_register.register(torch.nn.Conv1d)
|
||||
@meta_register.register(torch.nn.Conv2d)
|
||||
@meta_register.register(torch.nn.Conv3d)
|
||||
def convnd_meta_info(*args) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
||||
def convnd_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
||||
"""torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d meta info generator
|
||||
The atens graph of torch.nn.Convnd with bias is
|
||||
graph():
|
||||
|
@@ -20,7 +20,7 @@ __all__ = ['linear_meta_info']
|
||||
|
||||
|
||||
@meta_register.register(torch.nn.Linear)
|
||||
def linear_meta_info(*args) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
||||
def linear_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
||||
"""torch.nn.Linear meta info generator
|
||||
The atens graph of torch.nn.Linear with bias is
|
||||
graph():
|
||||
|
@@ -22,7 +22,7 @@ __all__ = ['batchnormnd_meta_info']
|
||||
@meta_register.register(torch.nn.BatchNorm1d)
|
||||
@meta_register.register(torch.nn.BatchNorm2d)
|
||||
@meta_register.register(torch.nn.BatchNorm3d)
|
||||
def batchnormnd_meta_info(*args) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
||||
def batchnormnd_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
||||
"""BatchNorm1d, BatchNorm2d, BatchNorm3d, meta info generator
|
||||
The aten graph of BatchNorm2d is like
|
||||
|
||||
|
@@ -13,6 +13,7 @@ from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||
)
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||
|
||||
from .constants import INPLACE_MODULE
|
||||
from .registry import meta_register
|
||||
|
||||
__all__ = ['MetaInfo']
|
||||
@@ -91,11 +92,17 @@ class MetaInfo:
|
||||
Compute meta info based on sharding strategy and the given target function.
|
||||
"""
|
||||
|
||||
assert meta_register.has(self._target), f'{self._target} not found in the meta registry'
|
||||
meta_func = meta_register.get(self._target)
|
||||
assert meta_register.has(self._target.__class__), f'{self._target.__class__} not found in the meta registry'
|
||||
meta_func = meta_register.get(self._target.__class__)
|
||||
|
||||
# construct args for meta_func
|
||||
args = [self.compute_sharded_tensor(k, v) for k, v in self._strategy.sharding_specs.items()]
|
||||
|
||||
# construct kwargs
|
||||
if self.target in INPLACE_MODULE:
|
||||
kwargs = {'inplace': self.target.inplace}
|
||||
else:
|
||||
kwargs = {'inplace': False}
|
||||
|
||||
# compute metainfo with meta_func
|
||||
self.compute_cost, self.memory_cost, self.fwd_in = meta_func(*args)
|
||||
self.compute_cost, self.memory_cost, self.fwd_in = meta_func(*args, **kwargs)
|
||||
|
Reference in New Issue
Block a user