mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-13 13:11:05 +00:00
[autoparallel] add torch.nn.ReLU metainfo (#1868)
* [fx] metainfo class for auto parallel * [fx] add unit test for linear metainfo * [fx] fix bwd param for linear * [fx] modify unit test * [fx] modify unit test * [fx] modify import * [fx] modify import * [fx] modify import * [fx] move meta profiler to auto parallel * [fx] add conv metainfo class * [fx] restore profiler * [fx] restore meta profiler * [autoparallel] modify unit test * [fx] modify unit test * [autoparallel] add batchnorm metainfo class * [autoparallel] fix batchnorm unit test function declaration * [fx] restore profiler * [fx] add relu metainfo class * [fx] restore profiler * [autoparallel] modify metainfo input
This commit is contained in:
@@ -0,0 +1,68 @@
|
||||
from typing import List, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
|
||||
from colossalai.fx.profiler.memory_utils import activation_size
|
||||
from colossalai.fx.profiler.opcount import flop_mapping
|
||||
|
||||
from ..registry import meta_register
|
||||
|
||||
__all__ = ["relu_meta_info"]
|
||||
|
||||
|
||||
@meta_register.register(torch.nn.ReLU)
|
||||
def relu_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
||||
"""torch.nn.ReLU metainfo generator
|
||||
The aten graph of torch.nn.ReLU is
|
||||
graph():
|
||||
%input_2 : [#users=1] = placeholder[target=placeholder](default=)
|
||||
%relu_default : [#users=2] = call_function[target=torch.ops.aten.relu.default](args = (%input_2,), kwargs = {})
|
||||
%zeros_like_default : [#users=1] = call_function[target=torch.ops.aten.zeros_like.default](args = (%relu_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
|
||||
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%relu_default,), kwargs = {})
|
||||
%threshold_backward_default : [#users=1] = call_function[target=torch.ops.aten.threshold_backward.default](args = (%zeros_like_default, %detach_default, None), kwargs = {})
|
||||
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%threshold_backward_default,), kwargs = {})
|
||||
%detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {})
|
||||
|
||||
Returns:
|
||||
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
|
||||
"""
|
||||
|
||||
input_tensor = next(filter(lambda x: x.type == OperationDataType.ARG, args)).data
|
||||
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
|
||||
inplace = kwargs.get("inplace", False)
|
||||
|
||||
# construct input args for forward
|
||||
fwd_in_args = [input_tensor]
|
||||
|
||||
# construct input args for backward
|
||||
bwd_in_args = [output_tensor]
|
||||
|
||||
# calculate cost
|
||||
# the fwd op with compute cost is relu.default
|
||||
# the bwd op with compute cost is threshold_backward
|
||||
|
||||
# calculate compute cost
|
||||
fwd_compute_cost = flop_mapping[torch.ops.aten.relu.default](fwd_in_args, (output_tensor,))
|
||||
bwd_compute_cost = flop_mapping[torch.ops.aten.threshold_backward.default](bwd_in_args, (input_tensor,))
|
||||
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
|
||||
|
||||
# calculate memory cost
|
||||
# NOTE: the inplace ReLU don't have forward memory cost
|
||||
fwd_memory_cost = MemoryCost(activation=0 if inplace else activation_size(output_tensor),
|
||||
parameter=0,
|
||||
temp=0,
|
||||
buffer=0)
|
||||
|
||||
bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor), parameter=0, temp=0, buffer=0)
|
||||
|
||||
# total cost is the sum of forward and backward cost
|
||||
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
|
||||
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
|
||||
|
||||
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
|
||||
|
||||
# store fwd_in
|
||||
fwd_in = [input_tensor]
|
||||
|
||||
return compute_cost, memory_cost, fwd_in
|
Reference in New Issue
Block a user