mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-08 20:40:34 +00:00
[autoparallel] add torch.nn.ReLU metainfo (#1868)
* [fx] metainfo class for auto parallel * [fx] add unit test for linear metainfo * [fx] fix bwd param for linear * [fx] modify unit test * [fx] modify unit test * [fx] modify import * [fx] modify import * [fx] modify import * [fx] move meta profiler to auto parallel * [fx] add conv metainfo class * [fx] restore profiler * [fx] restore meta profiler * [autoparallel] modify unit test * [fx] modify unit test * [autoparallel] add batchnorm metainfo class * [autoparallel] fix batchnorm unit test function declaration * [fx] restore profiler * [fx] add relu metainfo class * [fx] restore profiler * [autoparallel] modify metainfo input
This commit is contained in:
@@ -0,0 +1,61 @@
|
||||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||
from colossalai.testing.utils import parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.utils import free_port
|
||||
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy
|
||||
|
||||
|
||||
def _ReLU_module_mem_test(rank, world_size, port):
|
||||
"""This function is for conv memory test
|
||||
Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL
|
||||
|
||||
Args:
|
||||
Args:
|
||||
rank: device rank
|
||||
bias: indicate whether conv module need bias
|
||||
world_size: number of devices
|
||||
port: port for initializing process group
|
||||
"""
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
model = nn.Sequential(nn.ReLU()).cuda()
|
||||
input = torch.rand(4, 128, 64, 64).cuda()
|
||||
input.requires_grad = True
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
# index of conv node in computation graph
|
||||
node_index = 1
|
||||
# total number of conv strategies
|
||||
strategy_number = 1
|
||||
mem_test_for_node_strategy(rank=rank,
|
||||
model=model,
|
||||
device_mesh=device_mesh,
|
||||
node_index=node_index,
|
||||
strategy_number=strategy_number,
|
||||
input_args=[input],
|
||||
meta_arg_names=['input'])
|
||||
|
||||
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_ReLU_meta_concrete_info_match():
|
||||
world_size = 4
|
||||
run_func_module = partial(_ReLU_module_mem_test, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func_module, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_ReLU_meta_concrete_info_match()
|
@@ -60,9 +60,10 @@ def mem_test_for_node_strategy(rank: int,
|
||||
gm.recompile()
|
||||
gm: GraphModule
|
||||
|
||||
num_of_strategies = len(target_node.strategies_vector)
|
||||
if rank == 0:
|
||||
print("=======================")
|
||||
print(f"#strategy_index: {strategy_index}")
|
||||
print(f"#strategy_index: {strategy_index + 1}/{num_of_strategies}")
|
||||
pprint(target_node.strategies_vector[strategy_index])
|
||||
|
||||
# warmup
|
||||
@@ -104,7 +105,7 @@ def mem_test_for_node_strategy(rank: int,
|
||||
|
||||
# estimated memory
|
||||
metainfo = MetaInfo(target_node.strategies_vector[strategy_index],
|
||||
target_node.graph.owning_module.get_submodule(target_node.target).__class__)
|
||||
target_node.graph.owning_module.get_submodule(target_node.target))
|
||||
print("estimated memory:")
|
||||
print(
|
||||
f"forward activation: {metainfo.memory_cost.fwd.activation / 1024} kb, forward param: {metainfo.memory_cost.fwd.parameter / 1024} kb"
|
||||
|
Reference in New Issue
Block a user