[gemini] gemini mgr supports "cpu" placement policy (#1118)

* update gemini mgr

* update chunk

* add docstr

* polish placement policy

* update test chunk

* update test zero

* polish unit test

* remove useless unit test
This commit is contained in:
ver217
2022-06-15 15:05:19 +08:00
committed by GitHub
parent f99f56dff4
commit 7d14b473f0
7 changed files with 124 additions and 129 deletions

View File

@@ -44,6 +44,7 @@ def run_chunk_zero(use_chunk, use_zero):
params = [torch.rand(8, 8) for _ in range(3)]
chunk_size = 128 if use_chunk else None
chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero)
chunk_manager.create_group('param')
assert chunk_manager.total_mem['cpu'] == 0
assert chunk_manager.total_mem['cuda'] == 0
for p in params:

View File

@@ -1,82 +0,0 @@
import pytest
import colossalai
from colossalai.context.parallel_mode import ParallelMode
import torch.multiprocessing as mp
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils.cuda import get_current_device
from colossalai.utils import free_port
from colossalai.utils.model.colo_init_context import ColoInitContext
from colossalai.tensor import ChunkManager
from colossalai.core import global_context as gpc
from functools import partial
from _utils import tensor_equal, set_seed
from tests.components_to_test.registry import non_distributed_component_funcs
from torch.nn.parallel import DistributedDataParallel as DDP
from colossalai.nn.parallel import ColoDDPV2
from colossalai.testing import parameterize
from colossalai.gemini.gemini_mgr import GeminiManager
def check_param_equal(model, torch_model):
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
if p.storage().size() > 0:
assert tensor_equal(torch_p, p.float()), f'{torch_p} vs {p}'
def check_grad_equal(model, torch_model):
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
if p.grad is not None:
assert tensor_equal(torch_p.grad, p.grad.float())
@parameterize('use_chunk', [False, True])
@parameterize('use_zero', [False, True])
def run_gpt(use_chunk, use_zero):
set_seed(42)
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
with ColoInitContext(device=get_current_device()):
model = model_builder(checkpoint=True)
model = model.cuda()
torch_model = model_builder().cuda()
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
torch_p.data.copy_(p)
model = model.half()
chunk_size = 38 * 1024**2 if use_chunk else None
chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero)
gemini_manager = GeminiManager('cuda', chunk_manager)
model = ColoDDPV2(model, gemini_manager)
torch_model = DDP(torch_model, device_ids=[gpc.get_global_rank()], process_group=gpc.get_group(ParallelMode.DATA))
print(chunk_manager)
check_param_equal(model, torch_model)
model.train()
torch_model.train()
set_seed(gpc.get_local_rank(ParallelMode.DATA))
for i, (input_ids, attn_mask) in enumerate(train_dataloader):
logits = model(input_ids, attn_mask)
torch_logits = torch_model(input_ids, attn_mask)
assert tensor_equal(torch_logits, logits.float())
loss = criterion(logits, input_ids)
torch_loss = criterion(torch_logits, input_ids)
model.backward(loss)
torch_loss.backward()
check_grad_equal(model, torch_model)
break
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_gpt()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_gpt(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_gpt(4)

View File

@@ -25,22 +25,28 @@ def check_param_equal(model, torch_model):
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
if p.storage().size() > 0:
assert p.dtype == torch.half
assert tensor_equal(torch_p, p), f'{torch_p} vs {p}'
assert tensor_equal(torch_p.to(dtype=p.dtype, device=p.device), p), f'{torch_p} vs {p}'
def run_step(model, criterion, optimizer, input_ids, attn_mask):
def check_grad_equal(model, torch_model):
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
if p.grad is not None:
assert tensor_equal(torch_p.grad.to(dtype=p.grad.dtype, device=p.grad.device), p.grad)
def run_fwd_bwd(model, criterion, optimizer, input_ids, attn_mask):
optimizer.zero_grad()
logits = model(input_ids, attn_mask)
logits = logits.float()
loss = criterion(logits, input_ids)
optimizer.backward(loss)
optimizer.step()
return logits
@parameterize('use_chunk', [False, True])
@parameterize('use_zero', [False, True])
def run_gpt(use_chunk, use_zero):
@parameterize('placement_policy', ['cuda', 'cpu'])
def run_gpt(use_chunk, use_zero, placement_policy):
set_seed(42)
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
@@ -52,9 +58,11 @@ def run_gpt(use_chunk, use_zero):
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
torch_p.data.copy_(p)
chunk_size = 38 * 1024**2 if use_chunk else None
chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero)
gemini_manager = GeminiManager('cuda', chunk_manager)
chunk_size = ChunkManager.search_chunk_size(model, 8192, 8) if use_chunk else None
chunk_manager = ChunkManager(chunk_size,
enable_distributed_storage=use_zero,
init_device=GeminiManager.get_default_device(placement_policy))
gemini_manager = GeminiManager(placement_policy, chunk_manager)
model = ColoDDPV2(model, gemini_manager)
optim = HybridAdam(model.parameters(), lr=1e-3)
optim = ZeroOptimizer(optim, model, initial_scale=32)
@@ -64,7 +72,7 @@ def run_gpt(use_chunk, use_zero):
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
torch_model = DDP(torch_model, device_ids=[gpc.get_global_rank()], process_group=gpc.get_group(ParallelMode.DATA))
# print(chunk_manager)
print(chunk_manager)
check_param_equal(model, torch_model)
model.train()
torch_model.train()
@@ -72,9 +80,12 @@ def run_gpt(use_chunk, use_zero):
for i, (input_ids, attn_mask) in enumerate(train_dataloader):
if i > 2:
break
logits = run_step(model, criterion, optim, input_ids, attn_mask)
torch_logits = run_step(torch_model, criterion, torch_optim, input_ids, attn_mask)
logits = run_fwd_bwd(model, criterion, optim, input_ids, attn_mask)
torch_logits = run_fwd_bwd(torch_model, criterion, torch_optim, input_ids, attn_mask)
assert tensor_equal(logits, torch_logits)
check_grad_equal(model, torch_model)
optim.step()
torch_optim.step()
check_param_equal(model, torch_model)