mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-12 12:47:21 +00:00
[gemini] gemini mgr supports "cpu" placement policy (#1118)
* update gemini mgr * update chunk * add docstr * polish placement policy * update test chunk * update test zero * polish unit test * remove useless unit test
This commit is contained in:
@@ -44,6 +44,7 @@ def run_chunk_zero(use_chunk, use_zero):
|
||||
params = [torch.rand(8, 8) for _ in range(3)]
|
||||
chunk_size = 128 if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero)
|
||||
chunk_manager.create_group('param')
|
||||
assert chunk_manager.total_mem['cpu'] == 0
|
||||
assert chunk_manager.total_mem['cuda'] == 0
|
||||
for p in params:
|
||||
|
@@ -1,82 +0,0 @@
|
||||
import pytest
|
||||
import colossalai
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.testing import rerun_if_address_is_in_use
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||
from colossalai.tensor import ChunkManager
|
||||
from colossalai.core import global_context as gpc
|
||||
from functools import partial
|
||||
from _utils import tensor_equal, set_seed
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from colossalai.nn.parallel import ColoDDPV2
|
||||
from colossalai.testing import parameterize
|
||||
from colossalai.gemini.gemini_mgr import GeminiManager
|
||||
|
||||
|
||||
def check_param_equal(model, torch_model):
|
||||
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
|
||||
if p.storage().size() > 0:
|
||||
assert tensor_equal(torch_p, p.float()), f'{torch_p} vs {p}'
|
||||
|
||||
|
||||
def check_grad_equal(model, torch_model):
|
||||
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
|
||||
if p.grad is not None:
|
||||
assert tensor_equal(torch_p.grad, p.grad.float())
|
||||
|
||||
|
||||
@parameterize('use_chunk', [False, True])
|
||||
@parameterize('use_zero', [False, True])
|
||||
def run_gpt(use_chunk, use_zero):
|
||||
set_seed(42)
|
||||
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
with ColoInitContext(device=get_current_device()):
|
||||
model = model_builder(checkpoint=True)
|
||||
model = model.cuda()
|
||||
torch_model = model_builder().cuda()
|
||||
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
||||
torch_p.data.copy_(p)
|
||||
model = model.half()
|
||||
chunk_size = 38 * 1024**2 if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero)
|
||||
gemini_manager = GeminiManager('cuda', chunk_manager)
|
||||
model = ColoDDPV2(model, gemini_manager)
|
||||
torch_model = DDP(torch_model, device_ids=[gpc.get_global_rank()], process_group=gpc.get_group(ParallelMode.DATA))
|
||||
print(chunk_manager)
|
||||
check_param_equal(model, torch_model)
|
||||
model.train()
|
||||
torch_model.train()
|
||||
set_seed(gpc.get_local_rank(ParallelMode.DATA))
|
||||
for i, (input_ids, attn_mask) in enumerate(train_dataloader):
|
||||
logits = model(input_ids, attn_mask)
|
||||
torch_logits = torch_model(input_ids, attn_mask)
|
||||
assert tensor_equal(torch_logits, logits.float())
|
||||
loss = criterion(logits, input_ids)
|
||||
torch_loss = criterion(torch_logits, input_ids)
|
||||
model.backward(loss)
|
||||
torch_loss.backward()
|
||||
check_grad_equal(model, torch_model)
|
||||
break
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_gpt()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_gpt(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_gpt(4)
|
@@ -25,22 +25,28 @@ def check_param_equal(model, torch_model):
|
||||
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
|
||||
if p.storage().size() > 0:
|
||||
assert p.dtype == torch.half
|
||||
assert tensor_equal(torch_p, p), f'{torch_p} vs {p}'
|
||||
assert tensor_equal(torch_p.to(dtype=p.dtype, device=p.device), p), f'{torch_p} vs {p}'
|
||||
|
||||
|
||||
def run_step(model, criterion, optimizer, input_ids, attn_mask):
|
||||
def check_grad_equal(model, torch_model):
|
||||
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
|
||||
if p.grad is not None:
|
||||
assert tensor_equal(torch_p.grad.to(dtype=p.grad.dtype, device=p.grad.device), p.grad)
|
||||
|
||||
|
||||
def run_fwd_bwd(model, criterion, optimizer, input_ids, attn_mask):
|
||||
optimizer.zero_grad()
|
||||
logits = model(input_ids, attn_mask)
|
||||
logits = logits.float()
|
||||
loss = criterion(logits, input_ids)
|
||||
optimizer.backward(loss)
|
||||
optimizer.step()
|
||||
return logits
|
||||
|
||||
|
||||
@parameterize('use_chunk', [False, True])
|
||||
@parameterize('use_zero', [False, True])
|
||||
def run_gpt(use_chunk, use_zero):
|
||||
@parameterize('placement_policy', ['cuda', 'cpu'])
|
||||
def run_gpt(use_chunk, use_zero, placement_policy):
|
||||
set_seed(42)
|
||||
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
@@ -52,9 +58,11 @@ def run_gpt(use_chunk, use_zero):
|
||||
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
||||
torch_p.data.copy_(p)
|
||||
|
||||
chunk_size = 38 * 1024**2 if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero)
|
||||
gemini_manager = GeminiManager('cuda', chunk_manager)
|
||||
chunk_size = ChunkManager.search_chunk_size(model, 8192, 8) if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size,
|
||||
enable_distributed_storage=use_zero,
|
||||
init_device=GeminiManager.get_default_device(placement_policy))
|
||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||
model = ColoDDPV2(model, gemini_manager)
|
||||
optim = HybridAdam(model.parameters(), lr=1e-3)
|
||||
optim = ZeroOptimizer(optim, model, initial_scale=32)
|
||||
@@ -64,7 +72,7 @@ def run_gpt(use_chunk, use_zero):
|
||||
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||||
torch_model = DDP(torch_model, device_ids=[gpc.get_global_rank()], process_group=gpc.get_group(ParallelMode.DATA))
|
||||
|
||||
# print(chunk_manager)
|
||||
print(chunk_manager)
|
||||
check_param_equal(model, torch_model)
|
||||
model.train()
|
||||
torch_model.train()
|
||||
@@ -72,9 +80,12 @@ def run_gpt(use_chunk, use_zero):
|
||||
for i, (input_ids, attn_mask) in enumerate(train_dataloader):
|
||||
if i > 2:
|
||||
break
|
||||
logits = run_step(model, criterion, optim, input_ids, attn_mask)
|
||||
torch_logits = run_step(torch_model, criterion, torch_optim, input_ids, attn_mask)
|
||||
logits = run_fwd_bwd(model, criterion, optim, input_ids, attn_mask)
|
||||
torch_logits = run_fwd_bwd(torch_model, criterion, torch_optim, input_ids, attn_mask)
|
||||
assert tensor_equal(logits, torch_logits)
|
||||
check_grad_equal(model, torch_model)
|
||||
optim.step()
|
||||
torch_optim.step()
|
||||
check_param_equal(model, torch_model)
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user