[moe] init mixtral impl

This commit is contained in:
Xuanlei Zhao
2023-12-14 17:52:05 +08:00
committed by ver217
parent c53ddda88f
commit 7d8e0338a4
28 changed files with 2025 additions and 223 deletions

View File

@@ -1,13 +1,22 @@
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.testing import assert_close
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
from colossalai.legacy.engine.gradient_handler._base_gradient_handler import BaseGradientHandler
from colossalai.legacy.engine.gradient_handler.utils import bucket_allreduce
from colossalai.legacy.registry import GRADIENT_HANDLER
from colossalai.moe import SparseMLP
from colossalai.moe.manager import MOE_MANAGER
from colossalai.moe.utils import get_moe_epsize_param_dict
from colossalai.tensor.moe_tensor.api import get_ep_group, get_ep_size
def delete_moe_info(model):
for _, param in model.named_parameters():
if hasattr(param, "moe_info"):
delattr(param, "moe_info")
class MoeModel(nn.Module):
@@ -85,6 +94,74 @@ def assert_not_equal_in_group(tensor, process_group=None):
for i in range(world_size - 1):
a = tensor_list[i]
b = tensor_list[i + 1]
assert not torch.allclose(a, b), \
(f"expected tensors on rank {i} and {i + 1} not to be equal "
f"but they are, {a} vs {b}")
assert not torch.allclose(a, b), (
f"expected tensors on rank {i} and {i + 1} not to be equal " f"but they are, {a} vs {b}"
)
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False):
model.train()
with torch.cuda.amp.autocast(enabled=enable_autocast):
if criterion:
y = model(data)
loss = criterion(y, label)
else:
loss = model(data, label)
loss = loss.float()
if isinstance(model, LowLevelZeroModel):
optimizer.backward(loss)
else:
loss.backward()
return y
def sync_local_from_ep(local_model: SparseMLP, ep_model: SparseMLP, assert_grad_flag: bool = False) -> None:
"""Sync the parameters of tp model from ep model
Args:
local_model (MoeModule)
ep_model (MoeModule)
"""
for (local_name, local_param), (ep_name, ep_param) in zip(
local_model.named_parameters(), ep_model.named_parameters()
):
assert local_name in ep_name, print(f"{local_name} != {ep_name}")
if "experts" not in local_name:
if assert_grad_flag:
assert torch.allclose(local_param, ep_param), f"local_param: {local_param}, ep_param: {ep_param}"
assert torch.allclose(local_param.grad, ep_param.grad)
else:
local_param.data.copy_(ep_param.data)
continue
# gather param from ep model
param_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
dist.all_gather(param_list, ep_param, group=get_ep_group(ep_param))
all_param = torch.cat(param_list, dim=0)
if assert_grad_flag:
grad_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
dist.all_gather(grad_list, ep_param.grad, group=get_ep_group(ep_param))
all_grad = torch.cat(grad_list, dim=0)
if assert_grad_flag:
assert torch.allclose(local_param, all_param)
assert torch.allclose(local_param.grad, all_grad)
else:
local_param.data.copy_(all_param.data)
def loose_close(a, b, dtype: torch.dtype = torch.float32):
rtol = None
atol = None
if dtype is torch.float16:
rtol = 5e-2
atol = 5e-4
elif dtype is torch.bfloat16:
rtol = 4e-3
atol = 4e-3
a = a.detach().to(dtype)
b = b.detach().to(dtype).to(a.device)
assert_close(a, b, rtol=rtol, atol=atol)

View File

@@ -4,102 +4,75 @@ import torch
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import LowLevelZeroPlugin
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
from colossalai.moe.manager import MOE_MANAGER
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.testing.random import seed_all
from tests.test_moe.moe_utils import MoeGradientHandler, MoeModel
from tests.test_moe.moe_utils import MoeModel, delete_moe_info, run_fwd_bwd, sync_local_from_ep
def split_ddp_grad(grad, world_size):
with torch.no_grad():
grad = grad.clone().detach().flatten()
padding_size = (world_size - grad.numel() % world_size) % world_size
if padding_size > 0:
grad = torch.nn.functional.pad(grad, [0, padding_size])
splited_grad = grad.split(grad.numel() // world_size)
return splited_grad
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False):
model.train()
with torch.cuda.amp.autocast(enabled=enable_autocast):
if criterion:
y = model(data)
loss = criterion(y, label)
else:
loss = model(data, label)
loss = loss.float()
if isinstance(model, LowLevelZeroModel):
optimizer.backward(loss)
else:
loss.backward()
return y
def run_zero_test(local_rank, world_size, stage=1):
def run_zero_test(local_rank, stage=1):
criterion = torch.nn.CrossEntropyLoss()
zero_model = MoeModel()
optimizer = torch.optim.Adam(zero_model.parameters())
plugin = LowLevelZeroPlugin(stage=stage, precision="fp32")
booster = Booster(plugin=plugin)
zero_model, optimizer, _, _, _ = booster.boost(zero_model, optimizer)
MOE_MANAGER.__init__()
MOE_MANAGER.setup(parallel="EP")
moe_model = MoeModel().bfloat16()
moe_optimizer = torch.optim.Adam(moe_model.parameters())
moe_plugin = LowLevelZeroPlugin(stage=stage, precision="bf16")
moe_booster = Booster(plugin=moe_plugin)
moe_model, moe_optimizer, _, _, _ = moe_booster.boost(moe_model, moe_optimizer)
torch_model = MoeModel()
for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()):
torch_param.data.copy_(zero_param.data)
torch_model = torch_model.cuda()
grad_handler = MoeGradientHandler(torch_model)
MOE_MANAGER.__init__()
MOE_MANAGER.setup(parallel=None)
zero_model = MoeModel().bfloat16()
delete_moe_info(zero_model)
zero_optimizer = torch.optim.Adam(zero_model.parameters())
zero_plugin = LowLevelZeroPlugin(stage=stage, precision="bf16")
zero_booster = Booster(plugin=zero_plugin)
zero_model, zero_optimizer, _, _, _ = zero_booster.boost(zero_model, zero_optimizer)
sync_local_from_ep(zero_model, moe_model)
# assert zero model
for (torch_name, torch_param), (zero_name, zero_param) in zip(
torch_model.named_parameters(), zero_model.module.named_parameters()
):
assert zero_name == torch_name
assert torch.allclose(zero_param.data, torch_param.data)
data = torch.randn(16, 4).cuda()
data = torch.randn(16, 4).bfloat16().cuda()
label = torch.randint(0, 4, (16,)).cuda()
torch_out = run_fwd_bwd(torch_model, data, label, criterion, None)
zero_out = run_fwd_bwd(zero_model, data, label, criterion, optimizer)
assert torch.allclose(torch_out, zero_out)
grad_handler.handle_gradient()
zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
moe_out = run_fwd_bwd(moe_model, data, label, criterion, moe_optimizer)
assert torch.allclose(zero_out, moe_out)
for (zero_name, zero_param), (torch_name, torch_param) in zip(
zero_model.module.named_parameters(), torch_model.named_parameters()
for (moe_name, moe_param), (zero_name, zero_param) in zip(
moe_model.module.named_parameters(), zero_model.module.named_parameters()
):
assert zero_name == torch_name
zero_grad_list = optimizer._grad_store.get_partitioned_gradients_by_param_id(0, id(zero_param))
if hasattr(zero_param, "moe_info"):
assert len(zero_grad_list) == 0
assert torch.allclose(zero_param.grad, torch_param.grad)
assert moe_name == zero_name
moe_grad_list = moe_optimizer._grad_store.get_partitioned_gradients_by_param_id(0, id(moe_param))
zero_grad_list = zero_optimizer._grad_store.get_partitioned_gradients_by_param_id(0, id(zero_param))
if hasattr(moe_param, "moe_info"):
assert len(moe_grad_list) == 0
if stage == 1:
zero_grad = zero_grad_list[local_rank].view(moe_param.grad.shape)
else:
zero_grad = zero_grad_list[0].view(moe_param.grad.shape)
assert torch.allclose(
moe_param.grad, zero_grad, atol=1e-5
), f"zero grad:\n{moe_param.grad}\ntorch grad:\n{zero_grad}\nmax diff: {(moe_param.grad - zero_grad).abs().max()}, mean diff: {(moe_param.grad - zero_grad).abs().mean()}"
else:
assert len(zero_grad_list) > 0
torch_grad_list = split_ddp_grad(torch_param.grad, world_size)
if stage == 2:
torch_grad_list = torch_grad_list[local_rank : local_rank + 1]
assert len(zero_grad_list) == len(torch_grad_list)
for zero_grad, torch_grad in zip(zero_grad_list, torch_grad_list):
assert torch.allclose(zero_grad, torch_grad)
assert len(moe_grad_list) > 0
assert len(moe_grad_list) == len(zero_grad_list)
for moe_grad, zero_grad in zip(moe_grad_list, zero_grad_list):
assert torch.allclose(moe_grad, zero_grad)
def run_dist(rank, world_size, port):
def run_dist(rank, world_size, port, stage):
colossalai.launch(config=dict(), rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
MOE_MANAGER.setup(parallel="EP")
seed_all(42 + rank)
run_zero_test(rank, world_size, stage=1)
run_zero_test(rank, world_size, stage=2)
run_zero_test(rank, stage=stage)
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2])
@pytest.mark.parametrize("stage", [1, 2])
@rerun_if_address_is_in_use()
def test_moe_zero_model(world_size):
spawn(run_dist, world_size)
def test_moe_zero_model(world_size, stage):
spawn(run_dist, world_size, stage=stage)
if __name__ == "__main__":
test_moe_zero_model(world_size=2)
test_moe_zero_model(world_size=2, stage=1)

View File

@@ -4,89 +4,80 @@ import torch
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import LowLevelZeroPlugin
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
from colossalai.moe.manager import MOE_MANAGER
from colossalai.tensor.moe_tensor.api import is_moe_tensor
from colossalai.testing import rerun_if_address_is_in_use, spawn
from tests.test_moe.moe_utils import MoeGradientHandler, MoeModel
from colossalai.testing.random import seed_all
from tests.test_moe.moe_utils import MoeModel, delete_moe_info, loose_close, run_fwd_bwd, sync_local_from_ep
def split_ddp_grad(grad, world_size):
with torch.no_grad():
grad = grad.clone().detach().flatten()
padding_size = (world_size - grad.numel() % world_size) % world_size
if padding_size > 0:
grad = torch.nn.functional.pad(grad, [0, padding_size])
splited_grad = grad.split(grad.numel() // world_size)
return splited_grad
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False):
model.train()
with torch.cuda.amp.autocast(enabled=enable_autocast):
if criterion:
y = model(data)
loss = criterion(y, label)
else:
loss = model(data, label)
loss = loss.float()
if isinstance(model, LowLevelZeroModel):
optimizer.backward(loss)
else:
loss.backward()
return y
def run_zero_optim_test(local_rank, world_size, stage=1):
def run_zero_test(local_rank, stage=1):
criterion = torch.nn.CrossEntropyLoss()
zero_model = MoeModel()
zero_optimizer = torch.optim.Adam(zero_model.parameters())
plugin = LowLevelZeroPlugin(stage=stage, precision="fp32")
booster = Booster(plugin=plugin)
zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer)
MOE_MANAGER.__init__()
MOE_MANAGER.setup(parallel="EP")
moe_model = MoeModel().bfloat16()
moe_optimizer = torch.optim.Adam(moe_model.parameters(), lr=1.0)
moe_plugin = LowLevelZeroPlugin(stage=stage, precision="bf16")
moe_booster = Booster(plugin=moe_plugin)
moe_model, moe_optimizer, _, _, _ = moe_booster.boost(moe_model, moe_optimizer)
torch_model = MoeModel()
for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()):
torch_param.data.copy_(zero_param.data)
torch_optimizer = torch.optim.Adam(torch_model.parameters())
torch_model = torch_model.cuda()
grad_handler = MoeGradientHandler(torch_model)
MOE_MANAGER.__init__()
MOE_MANAGER.setup(parallel=None)
zero_model = MoeModel().bfloat16()
delete_moe_info(zero_model)
sync_local_from_ep(zero_model, moe_model)
zero_optimizer = torch.optim.Adam(zero_model.parameters(), lr=1.0)
zero_plugin = LowLevelZeroPlugin(stage=stage, precision="bf16")
zero_booster = Booster(plugin=zero_plugin)
zero_model, zero_optimizer, _, _, _ = zero_booster.boost(zero_model, zero_optimizer)
for _ in range(2):
data = torch.randn(16, 4).cuda() / (local_rank + 1)
label = torch.randint(0, 4, (16,)).cuda()
run_fwd_bwd(torch_model, data, label, criterion, None)
run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
grad_handler.handle_gradient()
for (moe_name, moe_param), (zero_name, zero_param) in zip(
moe_model.named_parameters(), zero_model.named_parameters()
):
if ".experts." in moe_name:
continue
assert moe_name == zero_name
assert torch.allclose(
moe_param.data, zero_param.data
), f"{moe_name}\ntorch_param {moe_param.data}\nzero_param {zero_param.data}"
torch_optimizer.step()
for _ in range(1):
data = torch.randn(2, 4).bfloat16().cuda()
label = torch.randint(0, 4, (2,)).cuda()
moe_out = run_fwd_bwd(moe_model, data, label, criterion, moe_optimizer)
zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
assert torch.allclose(zero_out, moe_out)
moe_optimizer.step()
zero_optimizer.step()
for (torch_name, torch_param), (zero_name, zero_param) in zip(
torch_model.named_parameters(), zero_model.named_parameters()
for (moe_name, moe_param), (zero_name, zero_param) in zip(
moe_model.named_parameters(), zero_model.named_parameters()
):
assert torch.allclose(
torch_param.data, zero_param.data
), f"{torch_name}\ntorch_param {torch_param.data}\nzero_param {zero_param.data}"
assert moe_name == zero_name
if is_moe_tensor(moe_param):
param_size = moe_param.shape[0]
zero_param = zero_param[local_rank * param_size : (local_rank + 1) * param_size]
loose_close(moe_param.data, zero_param.data, dtype=moe_param.dtype)
torch_optimizer.zero_grad()
moe_optimizer.zero_grad()
zero_optimizer.zero_grad()
def run_dist(rank, world_size, port):
def run_dist(rank, world_size, port, stage):
colossalai.launch(config=dict(), rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
MOE_MANAGER.setup(parallel="EP")
run_zero_optim_test(rank, world_size, stage=1)
run_zero_optim_test(rank, world_size, stage=2)
seed_all(42 + rank)
run_zero_test(rank, stage=stage)
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2])
@pytest.mark.parametrize("stage", [1, 2])
@rerun_if_address_is_in_use()
def test_moe_zero_optim(world_size):
spawn(run_dist, world_size)
def test_moe_zero_optim(world_size, stage):
spawn(run_dist, world_size, stage=stage)
if __name__ == "__main__":
test_moe_zero_optim(world_size=2)
test_moe_zero_optim(world_size=2, stage=1)