mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 01:06:00 +00:00
[moe] init mixtral impl
This commit is contained in:
@@ -1,13 +1,22 @@
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.testing import assert_close
|
||||
|
||||
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
|
||||
from colossalai.legacy.engine.gradient_handler._base_gradient_handler import BaseGradientHandler
|
||||
from colossalai.legacy.engine.gradient_handler.utils import bucket_allreduce
|
||||
from colossalai.legacy.registry import GRADIENT_HANDLER
|
||||
from colossalai.moe import SparseMLP
|
||||
from colossalai.moe.manager import MOE_MANAGER
|
||||
from colossalai.moe.utils import get_moe_epsize_param_dict
|
||||
from colossalai.tensor.moe_tensor.api import get_ep_group, get_ep_size
|
||||
|
||||
|
||||
def delete_moe_info(model):
|
||||
for _, param in model.named_parameters():
|
||||
if hasattr(param, "moe_info"):
|
||||
delattr(param, "moe_info")
|
||||
|
||||
|
||||
class MoeModel(nn.Module):
|
||||
@@ -85,6 +94,74 @@ def assert_not_equal_in_group(tensor, process_group=None):
|
||||
for i in range(world_size - 1):
|
||||
a = tensor_list[i]
|
||||
b = tensor_list[i + 1]
|
||||
assert not torch.allclose(a, b), \
|
||||
(f"expected tensors on rank {i} and {i + 1} not to be equal "
|
||||
f"but they are, {a} vs {b}")
|
||||
assert not torch.allclose(a, b), (
|
||||
f"expected tensors on rank {i} and {i + 1} not to be equal " f"but they are, {a} vs {b}"
|
||||
)
|
||||
|
||||
|
||||
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False):
|
||||
model.train()
|
||||
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
||||
if criterion:
|
||||
y = model(data)
|
||||
loss = criterion(y, label)
|
||||
else:
|
||||
loss = model(data, label)
|
||||
loss = loss.float()
|
||||
|
||||
if isinstance(model, LowLevelZeroModel):
|
||||
optimizer.backward(loss)
|
||||
else:
|
||||
loss.backward()
|
||||
return y
|
||||
|
||||
|
||||
def sync_local_from_ep(local_model: SparseMLP, ep_model: SparseMLP, assert_grad_flag: bool = False) -> None:
|
||||
"""Sync the parameters of tp model from ep model
|
||||
|
||||
Args:
|
||||
local_model (MoeModule)
|
||||
ep_model (MoeModule)
|
||||
"""
|
||||
for (local_name, local_param), (ep_name, ep_param) in zip(
|
||||
local_model.named_parameters(), ep_model.named_parameters()
|
||||
):
|
||||
assert local_name in ep_name, print(f"{local_name} != {ep_name}")
|
||||
if "experts" not in local_name:
|
||||
if assert_grad_flag:
|
||||
assert torch.allclose(local_param, ep_param), f"local_param: {local_param}, ep_param: {ep_param}"
|
||||
assert torch.allclose(local_param.grad, ep_param.grad)
|
||||
else:
|
||||
local_param.data.copy_(ep_param.data)
|
||||
continue
|
||||
|
||||
# gather param from ep model
|
||||
param_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
|
||||
dist.all_gather(param_list, ep_param, group=get_ep_group(ep_param))
|
||||
all_param = torch.cat(param_list, dim=0)
|
||||
if assert_grad_flag:
|
||||
grad_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
|
||||
dist.all_gather(grad_list, ep_param.grad, group=get_ep_group(ep_param))
|
||||
all_grad = torch.cat(grad_list, dim=0)
|
||||
|
||||
if assert_grad_flag:
|
||||
assert torch.allclose(local_param, all_param)
|
||||
assert torch.allclose(local_param.grad, all_grad)
|
||||
else:
|
||||
local_param.data.copy_(all_param.data)
|
||||
|
||||
|
||||
def loose_close(a, b, dtype: torch.dtype = torch.float32):
|
||||
rtol = None
|
||||
atol = None
|
||||
if dtype is torch.float16:
|
||||
rtol = 5e-2
|
||||
atol = 5e-4
|
||||
elif dtype is torch.bfloat16:
|
||||
rtol = 4e-3
|
||||
atol = 4e-3
|
||||
|
||||
a = a.detach().to(dtype)
|
||||
b = b.detach().to(dtype).to(a.device)
|
||||
|
||||
assert_close(a, b, rtol=rtol, atol=atol)
|
||||
|
@@ -4,102 +4,75 @@ import torch
|
||||
import colossalai
|
||||
from colossalai.booster import Booster
|
||||
from colossalai.booster.plugin import LowLevelZeroPlugin
|
||||
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
|
||||
from colossalai.moe.manager import MOE_MANAGER
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing.random import seed_all
|
||||
from tests.test_moe.moe_utils import MoeGradientHandler, MoeModel
|
||||
from tests.test_moe.moe_utils import MoeModel, delete_moe_info, run_fwd_bwd, sync_local_from_ep
|
||||
|
||||
|
||||
def split_ddp_grad(grad, world_size):
|
||||
with torch.no_grad():
|
||||
grad = grad.clone().detach().flatten()
|
||||
padding_size = (world_size - grad.numel() % world_size) % world_size
|
||||
if padding_size > 0:
|
||||
grad = torch.nn.functional.pad(grad, [0, padding_size])
|
||||
splited_grad = grad.split(grad.numel() // world_size)
|
||||
return splited_grad
|
||||
|
||||
|
||||
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False):
|
||||
model.train()
|
||||
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
||||
if criterion:
|
||||
y = model(data)
|
||||
loss = criterion(y, label)
|
||||
else:
|
||||
loss = model(data, label)
|
||||
loss = loss.float()
|
||||
|
||||
if isinstance(model, LowLevelZeroModel):
|
||||
optimizer.backward(loss)
|
||||
else:
|
||||
loss.backward()
|
||||
return y
|
||||
|
||||
|
||||
def run_zero_test(local_rank, world_size, stage=1):
|
||||
def run_zero_test(local_rank, stage=1):
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
|
||||
zero_model = MoeModel()
|
||||
optimizer = torch.optim.Adam(zero_model.parameters())
|
||||
plugin = LowLevelZeroPlugin(stage=stage, precision="fp32")
|
||||
booster = Booster(plugin=plugin)
|
||||
zero_model, optimizer, _, _, _ = booster.boost(zero_model, optimizer)
|
||||
MOE_MANAGER.__init__()
|
||||
MOE_MANAGER.setup(parallel="EP")
|
||||
moe_model = MoeModel().bfloat16()
|
||||
moe_optimizer = torch.optim.Adam(moe_model.parameters())
|
||||
moe_plugin = LowLevelZeroPlugin(stage=stage, precision="bf16")
|
||||
moe_booster = Booster(plugin=moe_plugin)
|
||||
moe_model, moe_optimizer, _, _, _ = moe_booster.boost(moe_model, moe_optimizer)
|
||||
|
||||
torch_model = MoeModel()
|
||||
for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()):
|
||||
torch_param.data.copy_(zero_param.data)
|
||||
torch_model = torch_model.cuda()
|
||||
grad_handler = MoeGradientHandler(torch_model)
|
||||
MOE_MANAGER.__init__()
|
||||
MOE_MANAGER.setup(parallel=None)
|
||||
zero_model = MoeModel().bfloat16()
|
||||
delete_moe_info(zero_model)
|
||||
zero_optimizer = torch.optim.Adam(zero_model.parameters())
|
||||
zero_plugin = LowLevelZeroPlugin(stage=stage, precision="bf16")
|
||||
zero_booster = Booster(plugin=zero_plugin)
|
||||
zero_model, zero_optimizer, _, _, _ = zero_booster.boost(zero_model, zero_optimizer)
|
||||
sync_local_from_ep(zero_model, moe_model)
|
||||
|
||||
# assert zero model
|
||||
for (torch_name, torch_param), (zero_name, zero_param) in zip(
|
||||
torch_model.named_parameters(), zero_model.module.named_parameters()
|
||||
):
|
||||
assert zero_name == torch_name
|
||||
assert torch.allclose(zero_param.data, torch_param.data)
|
||||
|
||||
data = torch.randn(16, 4).cuda()
|
||||
data = torch.randn(16, 4).bfloat16().cuda()
|
||||
label = torch.randint(0, 4, (16,)).cuda()
|
||||
|
||||
torch_out = run_fwd_bwd(torch_model, data, label, criterion, None)
|
||||
zero_out = run_fwd_bwd(zero_model, data, label, criterion, optimizer)
|
||||
assert torch.allclose(torch_out, zero_out)
|
||||
grad_handler.handle_gradient()
|
||||
zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
|
||||
moe_out = run_fwd_bwd(moe_model, data, label, criterion, moe_optimizer)
|
||||
assert torch.allclose(zero_out, moe_out)
|
||||
|
||||
for (zero_name, zero_param), (torch_name, torch_param) in zip(
|
||||
zero_model.module.named_parameters(), torch_model.named_parameters()
|
||||
for (moe_name, moe_param), (zero_name, zero_param) in zip(
|
||||
moe_model.module.named_parameters(), zero_model.module.named_parameters()
|
||||
):
|
||||
assert zero_name == torch_name
|
||||
zero_grad_list = optimizer._grad_store.get_partitioned_gradients_by_param_id(0, id(zero_param))
|
||||
if hasattr(zero_param, "moe_info"):
|
||||
assert len(zero_grad_list) == 0
|
||||
assert torch.allclose(zero_param.grad, torch_param.grad)
|
||||
assert moe_name == zero_name
|
||||
moe_grad_list = moe_optimizer._grad_store.get_partitioned_gradients_by_param_id(0, id(moe_param))
|
||||
zero_grad_list = zero_optimizer._grad_store.get_partitioned_gradients_by_param_id(0, id(zero_param))
|
||||
if hasattr(moe_param, "moe_info"):
|
||||
assert len(moe_grad_list) == 0
|
||||
if stage == 1:
|
||||
zero_grad = zero_grad_list[local_rank].view(moe_param.grad.shape)
|
||||
else:
|
||||
zero_grad = zero_grad_list[0].view(moe_param.grad.shape)
|
||||
assert torch.allclose(
|
||||
moe_param.grad, zero_grad, atol=1e-5
|
||||
), f"zero grad:\n{moe_param.grad}\ntorch grad:\n{zero_grad}\nmax diff: {(moe_param.grad - zero_grad).abs().max()}, mean diff: {(moe_param.grad - zero_grad).abs().mean()}"
|
||||
else:
|
||||
assert len(zero_grad_list) > 0
|
||||
torch_grad_list = split_ddp_grad(torch_param.grad, world_size)
|
||||
if stage == 2:
|
||||
torch_grad_list = torch_grad_list[local_rank : local_rank + 1]
|
||||
assert len(zero_grad_list) == len(torch_grad_list)
|
||||
for zero_grad, torch_grad in zip(zero_grad_list, torch_grad_list):
|
||||
assert torch.allclose(zero_grad, torch_grad)
|
||||
assert len(moe_grad_list) > 0
|
||||
assert len(moe_grad_list) == len(zero_grad_list)
|
||||
for moe_grad, zero_grad in zip(moe_grad_list, zero_grad_list):
|
||||
assert torch.allclose(moe_grad, zero_grad)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
def run_dist(rank, world_size, port, stage):
|
||||
colossalai.launch(config=dict(), rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
MOE_MANAGER.setup(parallel="EP")
|
||||
seed_all(42 + rank)
|
||||
run_zero_test(rank, world_size, stage=1)
|
||||
run_zero_test(rank, world_size, stage=2)
|
||||
run_zero_test(rank, stage=stage)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("world_size", [2])
|
||||
@pytest.mark.parametrize("stage", [1, 2])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_moe_zero_model(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
def test_moe_zero_model(world_size, stage):
|
||||
spawn(run_dist, world_size, stage=stage)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_moe_zero_model(world_size=2)
|
||||
test_moe_zero_model(world_size=2, stage=1)
|
||||
|
@@ -4,89 +4,80 @@ import torch
|
||||
import colossalai
|
||||
from colossalai.booster import Booster
|
||||
from colossalai.booster.plugin import LowLevelZeroPlugin
|
||||
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
|
||||
from colossalai.moe.manager import MOE_MANAGER
|
||||
from colossalai.tensor.moe_tensor.api import is_moe_tensor
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
from tests.test_moe.moe_utils import MoeGradientHandler, MoeModel
|
||||
from colossalai.testing.random import seed_all
|
||||
from tests.test_moe.moe_utils import MoeModel, delete_moe_info, loose_close, run_fwd_bwd, sync_local_from_ep
|
||||
|
||||
|
||||
def split_ddp_grad(grad, world_size):
|
||||
with torch.no_grad():
|
||||
grad = grad.clone().detach().flatten()
|
||||
padding_size = (world_size - grad.numel() % world_size) % world_size
|
||||
if padding_size > 0:
|
||||
grad = torch.nn.functional.pad(grad, [0, padding_size])
|
||||
splited_grad = grad.split(grad.numel() // world_size)
|
||||
return splited_grad
|
||||
|
||||
|
||||
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False):
|
||||
model.train()
|
||||
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
||||
if criterion:
|
||||
y = model(data)
|
||||
loss = criterion(y, label)
|
||||
else:
|
||||
loss = model(data, label)
|
||||
loss = loss.float()
|
||||
|
||||
if isinstance(model, LowLevelZeroModel):
|
||||
optimizer.backward(loss)
|
||||
else:
|
||||
loss.backward()
|
||||
return y
|
||||
|
||||
|
||||
def run_zero_optim_test(local_rank, world_size, stage=1):
|
||||
def run_zero_test(local_rank, stage=1):
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
|
||||
zero_model = MoeModel()
|
||||
zero_optimizer = torch.optim.Adam(zero_model.parameters())
|
||||
plugin = LowLevelZeroPlugin(stage=stage, precision="fp32")
|
||||
booster = Booster(plugin=plugin)
|
||||
zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer)
|
||||
MOE_MANAGER.__init__()
|
||||
MOE_MANAGER.setup(parallel="EP")
|
||||
moe_model = MoeModel().bfloat16()
|
||||
moe_optimizer = torch.optim.Adam(moe_model.parameters(), lr=1.0)
|
||||
moe_plugin = LowLevelZeroPlugin(stage=stage, precision="bf16")
|
||||
moe_booster = Booster(plugin=moe_plugin)
|
||||
moe_model, moe_optimizer, _, _, _ = moe_booster.boost(moe_model, moe_optimizer)
|
||||
|
||||
torch_model = MoeModel()
|
||||
for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()):
|
||||
torch_param.data.copy_(zero_param.data)
|
||||
torch_optimizer = torch.optim.Adam(torch_model.parameters())
|
||||
torch_model = torch_model.cuda()
|
||||
grad_handler = MoeGradientHandler(torch_model)
|
||||
MOE_MANAGER.__init__()
|
||||
MOE_MANAGER.setup(parallel=None)
|
||||
zero_model = MoeModel().bfloat16()
|
||||
delete_moe_info(zero_model)
|
||||
sync_local_from_ep(zero_model, moe_model)
|
||||
zero_optimizer = torch.optim.Adam(zero_model.parameters(), lr=1.0)
|
||||
zero_plugin = LowLevelZeroPlugin(stage=stage, precision="bf16")
|
||||
zero_booster = Booster(plugin=zero_plugin)
|
||||
zero_model, zero_optimizer, _, _, _ = zero_booster.boost(zero_model, zero_optimizer)
|
||||
|
||||
for _ in range(2):
|
||||
data = torch.randn(16, 4).cuda() / (local_rank + 1)
|
||||
label = torch.randint(0, 4, (16,)).cuda()
|
||||
run_fwd_bwd(torch_model, data, label, criterion, None)
|
||||
run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
|
||||
grad_handler.handle_gradient()
|
||||
for (moe_name, moe_param), (zero_name, zero_param) in zip(
|
||||
moe_model.named_parameters(), zero_model.named_parameters()
|
||||
):
|
||||
if ".experts." in moe_name:
|
||||
continue
|
||||
assert moe_name == zero_name
|
||||
assert torch.allclose(
|
||||
moe_param.data, zero_param.data
|
||||
), f"{moe_name}\ntorch_param {moe_param.data}\nzero_param {zero_param.data}"
|
||||
|
||||
torch_optimizer.step()
|
||||
for _ in range(1):
|
||||
data = torch.randn(2, 4).bfloat16().cuda()
|
||||
label = torch.randint(0, 4, (2,)).cuda()
|
||||
|
||||
moe_out = run_fwd_bwd(moe_model, data, label, criterion, moe_optimizer)
|
||||
zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
|
||||
assert torch.allclose(zero_out, moe_out)
|
||||
moe_optimizer.step()
|
||||
zero_optimizer.step()
|
||||
|
||||
for (torch_name, torch_param), (zero_name, zero_param) in zip(
|
||||
torch_model.named_parameters(), zero_model.named_parameters()
|
||||
for (moe_name, moe_param), (zero_name, zero_param) in zip(
|
||||
moe_model.named_parameters(), zero_model.named_parameters()
|
||||
):
|
||||
assert torch.allclose(
|
||||
torch_param.data, zero_param.data
|
||||
), f"{torch_name}\ntorch_param {torch_param.data}\nzero_param {zero_param.data}"
|
||||
assert moe_name == zero_name
|
||||
if is_moe_tensor(moe_param):
|
||||
param_size = moe_param.shape[0]
|
||||
zero_param = zero_param[local_rank * param_size : (local_rank + 1) * param_size]
|
||||
loose_close(moe_param.data, zero_param.data, dtype=moe_param.dtype)
|
||||
|
||||
torch_optimizer.zero_grad()
|
||||
moe_optimizer.zero_grad()
|
||||
zero_optimizer.zero_grad()
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
def run_dist(rank, world_size, port, stage):
|
||||
colossalai.launch(config=dict(), rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
MOE_MANAGER.setup(parallel="EP")
|
||||
run_zero_optim_test(rank, world_size, stage=1)
|
||||
run_zero_optim_test(rank, world_size, stage=2)
|
||||
seed_all(42 + rank)
|
||||
run_zero_test(rank, stage=stage)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("world_size", [2])
|
||||
@pytest.mark.parametrize("stage", [1, 2])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_moe_zero_optim(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
def test_moe_zero_optim(world_size, stage):
|
||||
spawn(run_dist, world_size, stage=stage)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_moe_zero_optim(world_size=2)
|
||||
test_moe_zero_optim(world_size=2, stage=1)
|
||||
|
Reference in New Issue
Block a user