mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-06 19:40:28 +00:00
[moe] init mixtral impl
This commit is contained in:
@@ -4,89 +4,80 @@ import torch
|
||||
import colossalai
|
||||
from colossalai.booster import Booster
|
||||
from colossalai.booster.plugin import LowLevelZeroPlugin
|
||||
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
|
||||
from colossalai.moe.manager import MOE_MANAGER
|
||||
from colossalai.tensor.moe_tensor.api import is_moe_tensor
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
from tests.test_moe.moe_utils import MoeGradientHandler, MoeModel
|
||||
from colossalai.testing.random import seed_all
|
||||
from tests.test_moe.moe_utils import MoeModel, delete_moe_info, loose_close, run_fwd_bwd, sync_local_from_ep
|
||||
|
||||
|
||||
def split_ddp_grad(grad, world_size):
|
||||
with torch.no_grad():
|
||||
grad = grad.clone().detach().flatten()
|
||||
padding_size = (world_size - grad.numel() % world_size) % world_size
|
||||
if padding_size > 0:
|
||||
grad = torch.nn.functional.pad(grad, [0, padding_size])
|
||||
splited_grad = grad.split(grad.numel() // world_size)
|
||||
return splited_grad
|
||||
|
||||
|
||||
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False):
|
||||
model.train()
|
||||
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
||||
if criterion:
|
||||
y = model(data)
|
||||
loss = criterion(y, label)
|
||||
else:
|
||||
loss = model(data, label)
|
||||
loss = loss.float()
|
||||
|
||||
if isinstance(model, LowLevelZeroModel):
|
||||
optimizer.backward(loss)
|
||||
else:
|
||||
loss.backward()
|
||||
return y
|
||||
|
||||
|
||||
def run_zero_optim_test(local_rank, world_size, stage=1):
|
||||
def run_zero_test(local_rank, stage=1):
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
|
||||
zero_model = MoeModel()
|
||||
zero_optimizer = torch.optim.Adam(zero_model.parameters())
|
||||
plugin = LowLevelZeroPlugin(stage=stage, precision="fp32")
|
||||
booster = Booster(plugin=plugin)
|
||||
zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer)
|
||||
MOE_MANAGER.__init__()
|
||||
MOE_MANAGER.setup(parallel="EP")
|
||||
moe_model = MoeModel().bfloat16()
|
||||
moe_optimizer = torch.optim.Adam(moe_model.parameters(), lr=1.0)
|
||||
moe_plugin = LowLevelZeroPlugin(stage=stage, precision="bf16")
|
||||
moe_booster = Booster(plugin=moe_plugin)
|
||||
moe_model, moe_optimizer, _, _, _ = moe_booster.boost(moe_model, moe_optimizer)
|
||||
|
||||
torch_model = MoeModel()
|
||||
for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()):
|
||||
torch_param.data.copy_(zero_param.data)
|
||||
torch_optimizer = torch.optim.Adam(torch_model.parameters())
|
||||
torch_model = torch_model.cuda()
|
||||
grad_handler = MoeGradientHandler(torch_model)
|
||||
MOE_MANAGER.__init__()
|
||||
MOE_MANAGER.setup(parallel=None)
|
||||
zero_model = MoeModel().bfloat16()
|
||||
delete_moe_info(zero_model)
|
||||
sync_local_from_ep(zero_model, moe_model)
|
||||
zero_optimizer = torch.optim.Adam(zero_model.parameters(), lr=1.0)
|
||||
zero_plugin = LowLevelZeroPlugin(stage=stage, precision="bf16")
|
||||
zero_booster = Booster(plugin=zero_plugin)
|
||||
zero_model, zero_optimizer, _, _, _ = zero_booster.boost(zero_model, zero_optimizer)
|
||||
|
||||
for _ in range(2):
|
||||
data = torch.randn(16, 4).cuda() / (local_rank + 1)
|
||||
label = torch.randint(0, 4, (16,)).cuda()
|
||||
run_fwd_bwd(torch_model, data, label, criterion, None)
|
||||
run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
|
||||
grad_handler.handle_gradient()
|
||||
for (moe_name, moe_param), (zero_name, zero_param) in zip(
|
||||
moe_model.named_parameters(), zero_model.named_parameters()
|
||||
):
|
||||
if ".experts." in moe_name:
|
||||
continue
|
||||
assert moe_name == zero_name
|
||||
assert torch.allclose(
|
||||
moe_param.data, zero_param.data
|
||||
), f"{moe_name}\ntorch_param {moe_param.data}\nzero_param {zero_param.data}"
|
||||
|
||||
torch_optimizer.step()
|
||||
for _ in range(1):
|
||||
data = torch.randn(2, 4).bfloat16().cuda()
|
||||
label = torch.randint(0, 4, (2,)).cuda()
|
||||
|
||||
moe_out = run_fwd_bwd(moe_model, data, label, criterion, moe_optimizer)
|
||||
zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
|
||||
assert torch.allclose(zero_out, moe_out)
|
||||
moe_optimizer.step()
|
||||
zero_optimizer.step()
|
||||
|
||||
for (torch_name, torch_param), (zero_name, zero_param) in zip(
|
||||
torch_model.named_parameters(), zero_model.named_parameters()
|
||||
for (moe_name, moe_param), (zero_name, zero_param) in zip(
|
||||
moe_model.named_parameters(), zero_model.named_parameters()
|
||||
):
|
||||
assert torch.allclose(
|
||||
torch_param.data, zero_param.data
|
||||
), f"{torch_name}\ntorch_param {torch_param.data}\nzero_param {zero_param.data}"
|
||||
assert moe_name == zero_name
|
||||
if is_moe_tensor(moe_param):
|
||||
param_size = moe_param.shape[0]
|
||||
zero_param = zero_param[local_rank * param_size : (local_rank + 1) * param_size]
|
||||
loose_close(moe_param.data, zero_param.data, dtype=moe_param.dtype)
|
||||
|
||||
torch_optimizer.zero_grad()
|
||||
moe_optimizer.zero_grad()
|
||||
zero_optimizer.zero_grad()
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
def run_dist(rank, world_size, port, stage):
|
||||
colossalai.launch(config=dict(), rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
MOE_MANAGER.setup(parallel="EP")
|
||||
run_zero_optim_test(rank, world_size, stage=1)
|
||||
run_zero_optim_test(rank, world_size, stage=2)
|
||||
seed_all(42 + rank)
|
||||
run_zero_test(rank, stage=stage)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("world_size", [2])
|
||||
@pytest.mark.parametrize("stage", [1, 2])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_moe_zero_optim(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
def test_moe_zero_optim(world_size, stage):
|
||||
spawn(run_dist, world_size, stage=stage)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_moe_zero_optim(world_size=2)
|
||||
test_moe_zero_optim(world_size=2, stage=1)
|
||||
|
Reference in New Issue
Block a user