This commit is contained in:
Jianghai
2024-01-26 15:02:12 +08:00
committed by GitHub
parent 4f28cb43c0
commit 7ddd8b37f0
4 changed files with 149 additions and 75 deletions

View File

@@ -2,6 +2,22 @@ import torch
import triton
import triton.language as tl
"""
# Base autotune if needed
@triton.autotune(
configs=[
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":4,},num_warps=4),
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":8,},num_warps=8),
triton.Config({'BLOCK_HEAD':8,"BLOCK_TOKENS":8,},num_warps=8),
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":4,},num_warps=16),
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":4,},num_warps=32),
triton.Config({'BLOCK_HEAD':16,"BLOCK_TOKENS":16,},num_warps=4),
triton.Config({'BLOCK_HEAD':8,"BLOCK_TOKENS":16,},num_warps=8),
],
key=['HEAD_DIM','q_total_tokens','Q_HEAD_NUM']
)
"""
@triton.jit
def rotary_embedding_kernel(
@@ -26,43 +42,53 @@ def rotary_embedding_kernel(
block_head_index = tl.program_id(0)
block_token_index = tl.program_id(1)
rotary_data = q
HEAD_NUM = Q_HEAD_NUM
head_stride = q_head_stride
token_stride = q_token_stride
if block_token_index * BLOCK_TOKENS >= q_total_tokens:
block_token_index = block_token_index - tl.cdiv(q_total_tokens, BLOCK_TOKENS)
rotary_data = k
HEAD_NUM = K_HEAD_NUM
head_stride = k_head_stride
token_stride = k_token_stride
tokens_range = block_token_index * BLOCK_TOKENS + tl.arange(0, BLOCK_TOKENS)
head_range = block_head_index * BLOCK_HEAD + tl.arange(0, BLOCK_HEAD)
dim_range0 = tl.arange(0, HEAD_DIM // 2)
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)
off_data0 = (
tokens_range[:, None, None] * token_stride
+ head_range[None, :, None] * head_stride
off_q0 = (
tokens_range[:, None, None] * q_token_stride
+ head_range[None, :, None] * q_head_stride
+ dim_range0[None, None, :] * head_dim_stride
)
off_data1 = (
tokens_range[:, None, None] * token_stride
+ head_range[None, :, None] * head_stride
off_q1 = (
tokens_range[:, None, None] * q_token_stride
+ head_range[None, :, None] * q_head_stride
+ dim_range1[None, None, :] * head_dim_stride
)
off_k0 = (
tokens_range[:, None, None] * k_token_stride
+ head_range[None, :, None] * k_head_stride
+ dim_range0[None, None, :] * head_dim_stride
)
off_k1 = (
tokens_range[:, None, None] * k_token_stride
+ head_range[None, :, None] * k_head_stride
+ dim_range1[None, None, :] * head_dim_stride
)
loaded_data0 = tl.load(
rotary_data + off_data0,
mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
loaded_q0 = tl.load(
q + off_q0,
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)
loaded_data1 = tl.load(
rotary_data + off_data1,
mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
loaded_q1 = tl.load(
q + off_q1,
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)
loaded_k0 = tl.load(
k + off_k0,
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)
loaded_k1 = tl.load(
k + off_k1,
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)
@@ -71,19 +97,32 @@ def rotary_embedding_kernel(
loaded_cos = tl.load(cos + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0)
loaded_sin = tl.load(sin + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0)
out0 = loaded_data0 * loaded_cos[:, None, :] - loaded_data1 * loaded_sin[:, None, :]
out1 = loaded_data0 * loaded_sin[:, None, :] + loaded_data1 * loaded_cos[:, None, :]
out_q0 = loaded_q0 * loaded_cos[:, None, :] - loaded_q1 * loaded_sin[:, None, :]
out_q1 = loaded_q0 * loaded_sin[:, None, :] + loaded_q1 * loaded_cos[:, None, :]
out_k0 = loaded_k0 * loaded_cos[:, None, :] - loaded_k1 * loaded_sin[:, None, :]
out_k1 = loaded_k0 * loaded_sin[:, None, :] + loaded_k1 * loaded_cos[:, None, :]
# concat
tl.store(
rotary_data + off_data0,
out0,
mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
q + off_q0,
out_q0,
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)
tl.store(
rotary_data + off_data1,
out1,
mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
q + off_q1,
out_q1,
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)
tl.store(
k + off_k0,
out_k0,
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)
tl.store(
k + off_k1,
out_k1,
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)
@@ -105,11 +144,13 @@ def rotary_embedding(
q_total_tokens, q_head_num, head_dim = q.shape
assert q.size(0) == k.size(0)
BLOCK_HEAD = 4
BLOCK_TOKENS = 8
grid = (triton.cdiv(q_head_num, BLOCK_HEAD), 2 * triton.cdiv(q_total_tokens, BLOCK_TOKENS))
BLOCK_TOKENS = 4
grid = lambda META: (triton.cdiv(q_head_num, META["BLOCK_HEAD"]), triton.cdiv(q_total_tokens, META["BLOCK_TOKENS"]))
if head_dim >= 128:
num_warps = 8
if head_dim >= 256:
num_warps = 32
elif head_dim >= 128:
num_warps = 16
else:
num_warps = 4
@@ -144,7 +185,6 @@ def rotary_embedding(
BLOCK_HEAD=BLOCK_HEAD,
BLOCK_TOKENS=BLOCK_TOKENS,
num_warps=num_warps,
num_stages=1,
)
return