mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 09:07:51 +00:00
[autoparallel]add embedding handler (#2089)
* [autoparallel] add embedding handler * fix bugs
This commit is contained in:
@@ -3,6 +3,7 @@ from .batch_norm_handler import BatchNormModuleHandler
|
||||
from .binary_elementwise_handler import BinaryElementwiseHandler
|
||||
from .bmm_handler import AddBMMFunctionHandler, BMMFunctionHandler
|
||||
from .conv_handler import ConvFunctionHandler, ConvModuleHandler
|
||||
from .embedding_handler import EmbeddingFunctionHandler, EmbeddingModuleHandler
|
||||
from .experimental import PermuteHandler, ViewHandler
|
||||
from .getatrr_handler import GetattrHandler
|
||||
from .getitem_handler import GetItemHandler
|
||||
@@ -23,5 +24,6 @@ __all__ = [
|
||||
'LayerNormModuleHandler', 'BatchNormModuleHandler', 'ConvModuleHandler', 'ConvFunctionHandler',
|
||||
'UnaryElementwiseHandler', 'ReshapeHandler', 'PlacehodlerHandler', 'OuputHandler', 'WhereHandler',
|
||||
'NormPoolingHandler', 'BinaryElementwiseHandler', 'MatMulHandler', 'operator_registry', 'ADDMMFunctionHandler',
|
||||
'GetItemHandler', 'GetattrHandler', 'ViewHandler', 'PermuteHandler', 'TensorConstructorHandler'
|
||||
'GetItemHandler', 'GetattrHandler', 'ViewHandler', 'PermuteHandler', 'TensorConstructorHandler',
|
||||
'EmbeddingModuleHandler', 'EmbeddingFunctionHandler'
|
||||
]
|
||||
|
@@ -0,0 +1,230 @@
|
||||
from typing import Dict, List, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.utils import update_partition_dim
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.tensor.sharding_spec import ShardingNotDivisibleError
|
||||
|
||||
from ..sharding_strategy import OperationData, OperationDataType, ShardingStrategy
|
||||
from .node_handler import ModuleHandler, NodeHandler
|
||||
from .registry import operator_registry
|
||||
from .strategy import EmbeddingStrategyGenerator, StrategyGenerator
|
||||
|
||||
__all__ = ['EmbeddingModuleHandler', 'EmbeddingFunctionHandler']
|
||||
|
||||
|
||||
def _convert_logical_sharding_to_physical_sharding_spec_for_embedding(strategy: ShardingStrategy, input_name: str,
|
||||
output_name: str) -> List[ShardingStrategy]:
|
||||
"""
|
||||
This function converts the logical sharding spec to the physical sharding spec for both the input and output
|
||||
of the embedding operation.
|
||||
|
||||
Args:
|
||||
strategy (ShardingStrategy): the logical strategy generated by the strategy generator.
|
||||
input_name (str): the name of the OperationData object for the input.
|
||||
output_name (str): the name of the OperationData object for the output.
|
||||
"""
|
||||
# the result will be a list of strategies
|
||||
sharding_strategies = []
|
||||
|
||||
# get operation data
|
||||
input_op_data = strategy.get_op_data_by_name(input_name)
|
||||
output_op_data = strategy.get_op_data_by_name(output_name)
|
||||
input_sharding_spec = strategy.get_sharding_spec_by_name(input_op_data.name)
|
||||
output_sharding_spec = strategy.get_sharding_spec_by_name(output_op_data.name)
|
||||
|
||||
# recover the last logical dimension to physical dimension
|
||||
last_logical_output_dims = len(output_op_data.logical_shape) - 1
|
||||
last_physical_output_dims = output_op_data.data.dim() - 1
|
||||
|
||||
# get logger for debug message
|
||||
logger = get_dist_logger()
|
||||
|
||||
# For the input of the embedding operation, it can be multi-dimensional. The sharding spec is only generated for
|
||||
# logical 1D non-matrix dimension, the logical non-matrix dimension can belong to the 0th to Nth dimension of the
|
||||
# physical input shape. Thus, we enumerate to get all possible cases.
|
||||
if input_sharding_spec.dim_partition_dict:
|
||||
# if bool(input_sharding_spec.dim_partition_dict), it means that the
|
||||
# the generated sharding strategy does shard the non-matrix dimension,
|
||||
# in this case, we need to do enumeration
|
||||
num_input_dims = input_op_data.data.dim()
|
||||
for i in range(num_input_dims):
|
||||
strategy_copy = strategy.clone()
|
||||
input_sharding_spec = strategy_copy.get_sharding_spec_by_name(input_op_data.name)
|
||||
output_sharding_spec = strategy_copy.get_sharding_spec_by_name(output_op_data.name)
|
||||
try:
|
||||
# replace the 0th dimension in the logical sharding with ith dimension in the physical sharding
|
||||
update_partition_dim(sharding_spec=input_sharding_spec,
|
||||
dim_mapping={0: i},
|
||||
physical_shape=input_op_data.data.shape,
|
||||
inplace=True)
|
||||
|
||||
if last_logical_output_dims in output_sharding_spec.dim_partition_dict:
|
||||
dim_mapping = {0: i, last_logical_output_dims: last_physical_output_dims}
|
||||
else:
|
||||
dim_mapping = {0: i}
|
||||
|
||||
update_partition_dim(sharding_spec=output_sharding_spec,
|
||||
dim_mapping=dim_mapping,
|
||||
physical_shape=output_op_data.data.shape,
|
||||
inplace=True)
|
||||
|
||||
strategy_copy.name = f'{strategy.name}_{i}'
|
||||
sharding_strategies.append(strategy_copy)
|
||||
|
||||
except ShardingNotDivisibleError as e:
|
||||
logger.debug(
|
||||
f'Errored occurred when converting the logical sharding spec to the physical one. Error details: {e}'
|
||||
)
|
||||
else:
|
||||
# the generated sharding strategy does not shard the non-matrix dimension,
|
||||
# in this case, we don't need to do enumeration
|
||||
# but instead, we still need to convert the logical shape to physical shape
|
||||
strategy_copy = strategy.clone()
|
||||
input_sharding_spec = strategy_copy.get_sharding_spec_by_name(input_op_data.name)
|
||||
output_sharding_spec = strategy_copy.get_sharding_spec_by_name(output_op_data.name)
|
||||
|
||||
# after updating, the logical shape will be replaced by the physical shape
|
||||
update_partition_dim(sharding_spec=input_sharding_spec,
|
||||
dim_mapping={},
|
||||
physical_shape=input_op_data.data.shape,
|
||||
inplace=True)
|
||||
|
||||
if last_logical_output_dims in output_sharding_spec.dim_partition_dict:
|
||||
dim_mapping = {last_logical_output_dims: last_physical_output_dims}
|
||||
else:
|
||||
dim_mapping = {}
|
||||
|
||||
update_partition_dim(sharding_spec=output_sharding_spec,
|
||||
dim_mapping=dim_mapping,
|
||||
physical_shape=output_op_data.data.shape,
|
||||
inplace=True)
|
||||
sharding_strategies.append(strategy_copy)
|
||||
|
||||
return sharding_strategies
|
||||
|
||||
|
||||
@operator_registry.register(torch.nn.Embedding)
|
||||
class EmbeddingModuleHandler(ModuleHandler):
|
||||
"""
|
||||
A EmbeddingModuleHandler which deals with the sharding strategies for nn.Embedding module.
|
||||
"""
|
||||
|
||||
def get_strategy_generator(self) -> List[StrategyGenerator]:
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
generators = []
|
||||
generators.append(EmbeddingStrategyGenerator(op_data_mapping, self.device_mesh))
|
||||
return generators
|
||||
|
||||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
# In nn.Embedding operation, all the dimensions of input will be treated as the batch dimension,
|
||||
# and then the sharding spec will be generated based on the logical 1D tensor.
|
||||
# After that, the logical sharding info will be enumerated among all the physical dimensions.
|
||||
# Finally, the input will be transformed back to its original shape in self.post_process
|
||||
input_meta_data = self.node.args[0]._meta_data
|
||||
input_logical_shape = input_meta_data.view(-1).shape
|
||||
physical_input_operand = OperationData(name=str(self.node.args[0]),
|
||||
type=OperationDataType.ARG,
|
||||
data=input_meta_data,
|
||||
logical_shape=input_logical_shape)
|
||||
|
||||
physical_other_operand = OperationData(name="weight",
|
||||
type=OperationDataType.PARAM,
|
||||
data=self.named_parameters['weight'])
|
||||
|
||||
# Same as input, in nn.Embedding operation, all the dimensions of output will be treated as
|
||||
# (batch dimension, embedding dimension), and then the sharding spec will be generated based
|
||||
# on the logical 2D tensor.
|
||||
# After that, the logical sharding info of batch dimension will be enumerated among all the physical dimensions.
|
||||
# Finally, the output will be transformed back to its original shape in self.post_process
|
||||
output_meta_data = self.node._meta_data
|
||||
output_logical_shape = output_meta_data.view(-1, output_meta_data.shape[-1]).shape
|
||||
physical_output = OperationData(name=str(self.node),
|
||||
type=OperationDataType.OUTPUT,
|
||||
data=output_meta_data,
|
||||
logical_shape=output_logical_shape)
|
||||
|
||||
mapping = {"input": physical_input_operand, "other": physical_other_operand, "output": physical_output}
|
||||
|
||||
return mapping
|
||||
|
||||
def post_process(self, strategy: ShardingStrategy) -> Union[ShardingStrategy, List[ShardingStrategy]]:
|
||||
"""
|
||||
Convert the sharding spec from the logical shape to the physical shape.
|
||||
"""
|
||||
# create multiple sharding strategies for the inputs
|
||||
# as input can be multi-dimensinal and the partition dim is only 2D,
|
||||
# we need to map the partition at logical dim 0 to one of the first few dimensions of the input and output
|
||||
strategies = _convert_logical_sharding_to_physical_sharding_spec_for_embedding(strategy=strategy,
|
||||
input_name=str(
|
||||
self.node.args[0]),
|
||||
output_name=str(self.node))
|
||||
return strategies
|
||||
|
||||
|
||||
@operator_registry.register(F.embedding)
|
||||
class EmbeddingFunctionHandler(NodeHandler):
|
||||
"""
|
||||
A EmbeddingFunctionHandler which deals with the sharding strategies for F.embedding.
|
||||
"""
|
||||
|
||||
def get_strategy_generator(self) -> List[StrategyGenerator]:
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
generators = []
|
||||
generators.append(EmbeddingStrategyGenerator(op_data_mapping, self.device_mesh))
|
||||
return generators
|
||||
|
||||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
# In F.embedding operation, all the dimensions of input will be treated as the batch dimension,
|
||||
# and then the sharding spec will be generated based on the logical 1D tensor.
|
||||
# After that, the logical sharding info will be enumerated among all the physical dimensions.
|
||||
# Finally, the input will be transformed back to its original shape in self.post_process
|
||||
input_meta_data = self.node.args[0]._meta_data
|
||||
input_logical_shape = input_meta_data.view(-1).shape
|
||||
physical_input_operand = OperationData(name=str(self.node.args[0]),
|
||||
type=OperationDataType.ARG,
|
||||
data=self.node.args[0]._meta_data,
|
||||
logical_shape=input_logical_shape)
|
||||
|
||||
# check if the other operand is a parameter
|
||||
if isinstance(self.node.args[1]._meta_data, torch.nn.parameter.Parameter):
|
||||
data_type = OperationDataType.PARAM
|
||||
else:
|
||||
data_type = OperationDataType.ARG
|
||||
|
||||
physical_other_operand = OperationData(name=str(self.node.args[1]),
|
||||
type=data_type,
|
||||
data=self.node.args[1]._meta_data)
|
||||
|
||||
# Same as input, in F.embedding operation, all the dimensions of output will be treated as
|
||||
# (batch dimension, embedding dimension), and then the sharding spec will be generated based
|
||||
# on the logical 2D tensor.
|
||||
# After that, the logical sharding info of batch dimension will be enumerated among all the physical dimensions.
|
||||
# Finally, the output will be transformed back to its original shape in self.post_process
|
||||
output_meta_data = self.node._meta_data
|
||||
output_logical_shape = output_meta_data.view(-1, output_meta_data.shape[-1]).shape
|
||||
physical_output = OperationData(
|
||||
name=str(self.node),
|
||||
type=OperationDataType.OUTPUT,
|
||||
data=self.node._meta_data,
|
||||
logical_shape=output_logical_shape,
|
||||
)
|
||||
|
||||
mapping = {"input": physical_input_operand, "other": physical_other_operand, "output": physical_output}
|
||||
|
||||
return mapping
|
||||
|
||||
def post_process(self, strategy: ShardingStrategy):
|
||||
"""
|
||||
Convert the sharding spec from the logical shape to the physical shape.
|
||||
"""
|
||||
# create multiple sharding strategies for the inputs
|
||||
# as input can be multi-dimensinal and the partition dim is only 2D,
|
||||
# we need to map the partition at logical dim 0 to one of the first few dimensions of the input and output
|
||||
strategies = _convert_logical_sharding_to_physical_sharding_spec_for_embedding(strategy=strategy,
|
||||
input_name=str(
|
||||
self.node.args[0]),
|
||||
output_name=str(self.node))
|
||||
return strategies
|
@@ -1,6 +1,7 @@
|
||||
from .batch_norm_generator import BatchNormStrategyGenerator
|
||||
from .binary_elementwise_generator import BinaryElementwiseStrategyGenerator
|
||||
from .conv_strategy_generator import ConvStrategyGenerator
|
||||
from .embedding_generator import EmbeddingStrategyGenerator
|
||||
from .getattr_generator import GetattrGenerator
|
||||
from .getitem_generator import GetItemStrategyGenerator, TensorStrategyGenerator, TensorTupleStrategyGenerator
|
||||
from .layer_norm_generator import LayerNormGenerator
|
||||
@@ -25,5 +26,5 @@ __all__ = [
|
||||
'BatchNormStrategyGenerator', 'GetItemStrategyGenerator', 'TensorStrategyGenerator', 'TensorTupleStrategyGenerator',
|
||||
'LayerNormGenerator', 'ReshapeGenerator', 'PlaceholderGenerator', 'OutputGenerator', 'WhereGenerator',
|
||||
'ReshapeGenerator', 'NormalPoolStrategyGenerator', 'BinaryElementwiseStrategyGenerator', 'GetattrGenerator',
|
||||
'TensorConstructorGenerator'
|
||||
'TensorConstructorGenerator', 'EmbeddingStrategyGenerator'
|
||||
]
|
||||
|
@@ -0,0 +1,310 @@
|
||||
import copy
|
||||
import operator
|
||||
import warnings
|
||||
from functools import reduce
|
||||
from typing import List
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||
CommAction,
|
||||
CommType,
|
||||
MemoryCost,
|
||||
ShardingStrategy,
|
||||
TrainCycleItem,
|
||||
)
|
||||
from colossalai.auto_parallel.tensor_shard.utils import ignore_sharding_exception
|
||||
from colossalai.tensor.shape_consistency import CollectiveCommPattern
|
||||
|
||||
from .strategy_generator import StrategyGenerator
|
||||
|
||||
|
||||
class EmbeddingStrategyGenerator(StrategyGenerator):
|
||||
"""
|
||||
EmbeddingStrategyGenerator is a generic class to generate strategies for nn.Embedding or F.embedding.
|
||||
The operation data is defined as `output = input x other`.
|
||||
"""
|
||||
|
||||
def validate(self) -> bool:
|
||||
return super().validate()
|
||||
|
||||
def update_compute_cost(self, strategy: ShardingStrategy):
|
||||
'''
|
||||
Compute the computation cost per device with this specific strategy.
|
||||
|
||||
Note: The computation cost for the embedding handler is estimated as dense computing now.
|
||||
It may not be accurate.
|
||||
'''
|
||||
# TODO: estimate the embedding computation cost as sparse operation
|
||||
sharded_input_shape = strategy.sharding_specs[self.op_data['input']].get_sharded_shape_per_device()
|
||||
sharded_other_shape = strategy.sharding_specs[self.op_data['other']].get_sharded_shape_per_device()
|
||||
sharded_output_shape = strategy.sharding_specs[self.op_data['output']].get_sharded_shape_per_device()
|
||||
|
||||
input_size_product = reduce(operator.mul, sharded_input_shape)
|
||||
other_size_product = reduce(operator.mul, sharded_other_shape)
|
||||
output_size_product = reduce(operator.mul, sharded_output_shape)
|
||||
|
||||
forward_compute_cost = input_size_product * other_size_product
|
||||
|
||||
backward_activation_cost = other_size_product * output_size_product / sharded_output_shape[-1]
|
||||
backward_weight_cost = input_size_product * other_size_product
|
||||
backward_compute_cost = backward_weight_cost + backward_activation_cost
|
||||
|
||||
total_compute_cost = forward_compute_cost + backward_compute_cost
|
||||
|
||||
compute_cost = TrainCycleItem(fwd=forward_compute_cost, bwd=backward_compute_cost, total=total_compute_cost)
|
||||
strategy.compute_cost = compute_cost
|
||||
|
||||
def update_memory_cost(self, strategy: ShardingStrategy):
|
||||
forward_size_mapping = {
|
||||
'input': self._compute_size_in_bytes(strategy, "input"),
|
||||
'other': self._compute_size_in_bytes(strategy, "other"),
|
||||
'output': self._compute_size_in_bytes(strategy, "output")
|
||||
}
|
||||
|
||||
backward_size_mapping = copy.deepcopy(forward_size_mapping)
|
||||
backward_size_mapping.pop("output")
|
||||
# compute fwd cost incurred
|
||||
# fwd_cost = input + other + output
|
||||
fwd_activation_cost = sum([v for k, v in forward_size_mapping.items() if not self.is_param(k)])
|
||||
fwd_parameter_cost = sum([v for k, v in forward_size_mapping.items() if self.is_param(k)])
|
||||
fwd_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=fwd_parameter_cost)
|
||||
|
||||
# compute bwd cost incurred
|
||||
# bwd_cost = input_grad + other_grad
|
||||
bwd_activation_cost = sum([v for k, v in backward_size_mapping.items() if not self.is_param(k)])
|
||||
bwd_parameter_cost = sum([v for k, v in backward_size_mapping.items() if self.is_param(k)])
|
||||
bwd_mem_cost = MemoryCost(activation=bwd_activation_cost, parameter=bwd_parameter_cost)
|
||||
|
||||
# compute total cost
|
||||
total_mem_cost = MemoryCost(activation=fwd_activation_cost + bwd_activation_cost,
|
||||
parameter=fwd_parameter_cost + bwd_parameter_cost)
|
||||
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
|
||||
strategy.memory_cost = memory_cost
|
||||
|
||||
@ignore_sharding_exception
|
||||
def non_split(self):
|
||||
name = f'RR = R x RR'
|
||||
|
||||
dim_partition_dict_mapping = {
|
||||
"input": {},
|
||||
"other": {},
|
||||
"output": {},
|
||||
}
|
||||
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
return self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping={})
|
||||
|
||||
@ignore_sharding_exception
|
||||
def split_input(self, mesh_dim_0):
|
||||
name = f'S{mesh_dim_0}R = S{mesh_dim_0} x RR'
|
||||
|
||||
dim_partition_dict_mapping = {
|
||||
"input": {
|
||||
0: [mesh_dim_0]
|
||||
},
|
||||
"other": {},
|
||||
"output": {
|
||||
0: [mesh_dim_0],
|
||||
},
|
||||
}
|
||||
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
communication_action_mapping = {}
|
||||
if self.is_param("other"):
|
||||
other_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["other"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=mesh_dim_0,
|
||||
comm_type=CommType.HOOK)
|
||||
|
||||
else:
|
||||
other_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["other"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=mesh_dim_0,
|
||||
comm_type=CommType.BEFORE,
|
||||
arg_index=1)
|
||||
|
||||
communication_action_mapping["other"] = other_comm_action
|
||||
|
||||
return self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
@ignore_sharding_exception
|
||||
def split_input_and_embedding_dim(self, mesh_dim_0, mesh_dim_1):
|
||||
name = f'S{mesh_dim_0}S{mesh_dim_1} = S{mesh_dim_0} x RS{mesh_dim_1}'
|
||||
|
||||
dim_partition_dict_mapping = {
|
||||
"input": {
|
||||
0: [mesh_dim_0],
|
||||
},
|
||||
"other": {
|
||||
1: [mesh_dim_1],
|
||||
},
|
||||
"output": {
|
||||
0: [mesh_dim_0],
|
||||
1: [mesh_dim_1],
|
||||
},
|
||||
}
|
||||
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
# set communication action
|
||||
input_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["input"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=mesh_dim_1,
|
||||
comm_type=CommType.BEFORE,
|
||||
arg_index=0)
|
||||
communication_action_mapping = {"input": input_comm_action}
|
||||
|
||||
if self.is_param("other"):
|
||||
other_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["other"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=mesh_dim_0,
|
||||
comm_type=CommType.HOOK)
|
||||
|
||||
else:
|
||||
other_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["other"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=mesh_dim_0,
|
||||
comm_type=CommType.BEFORE,
|
||||
arg_index=1)
|
||||
|
||||
communication_action_mapping["other"] = other_comm_action
|
||||
|
||||
return self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
@ignore_sharding_exception
|
||||
def split_1d_parallel_on_input(self, mesh_dim_0, mesh_dim_1):
|
||||
name = f'S{mesh_dim_0}{mesh_dim_1}R = S{mesh_dim_0}{mesh_dim_1} x RR'
|
||||
|
||||
dim_partition_dict_mapping = {
|
||||
"input": {
|
||||
0: [mesh_dim_0, mesh_dim_1]
|
||||
},
|
||||
"other": {},
|
||||
"output": {
|
||||
0: [mesh_dim_0, mesh_dim_1],
|
||||
},
|
||||
}
|
||||
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
# set communication action
|
||||
communication_action_mapping = {}
|
||||
|
||||
if self.is_param("other"):
|
||||
other_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["other"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=[mesh_dim_0, mesh_dim_1],
|
||||
comm_type=CommType.HOOK)
|
||||
|
||||
else:
|
||||
other_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["other"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=[mesh_dim_0, mesh_dim_1],
|
||||
comm_type=CommType.BEFORE,
|
||||
arg_index=1)
|
||||
|
||||
communication_action_mapping["other"] = other_comm_action
|
||||
|
||||
return self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
@ignore_sharding_exception
|
||||
def split_embedding_dim(self, mesh_dim_0):
|
||||
name = f'RS{mesh_dim_0} = R x RS{mesh_dim_0}'
|
||||
|
||||
dim_partition_dict_mapping = {
|
||||
"input": {},
|
||||
"other": {
|
||||
1: [mesh_dim_0],
|
||||
},
|
||||
"output": {
|
||||
1: [mesh_dim_0],
|
||||
},
|
||||
}
|
||||
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
# set communication action
|
||||
input_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["input"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=mesh_dim_0,
|
||||
comm_type=CommType.BEFORE,
|
||||
arg_index=0)
|
||||
|
||||
communication_action_mapping = {"input": input_comm_action}
|
||||
|
||||
return self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
@ignore_sharding_exception
|
||||
def split_1d_parallel_on_embedding_dim(self, mesh_dim_0, mesh_dim_1):
|
||||
name = f'RS{mesh_dim_0}{mesh_dim_1} = R x RS{mesh_dim_0}{mesh_dim_1}'
|
||||
|
||||
dim_partition_dict_mapping = {
|
||||
"input": {},
|
||||
"other": {
|
||||
1: [mesh_dim_0, mesh_dim_1],
|
||||
},
|
||||
"output": {
|
||||
1: [mesh_dim_0, mesh_dim_1],
|
||||
},
|
||||
}
|
||||
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
# set communication action
|
||||
input_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["input"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=[mesh_dim_0, mesh_dim_1],
|
||||
comm_type=CommType.BEFORE,
|
||||
arg_index=0)
|
||||
|
||||
communication_action_mapping = {"input": input_comm_action}
|
||||
|
||||
return self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
def collate_strategies(self) -> List[ShardingStrategy]:
|
||||
strategies = []
|
||||
|
||||
# RR= R x RR
|
||||
strategies.append(self.non_split())
|
||||
|
||||
# SR = S x RR
|
||||
strategies.append(self.split_input(0))
|
||||
strategies.append(self.split_input(1))
|
||||
|
||||
# SS = S x RS
|
||||
strategies.append(self.split_input_and_embedding_dim(0, 1))
|
||||
strategies.append(self.split_input_and_embedding_dim(1, 0))
|
||||
|
||||
# S01R = S01 x RR
|
||||
strategies.append(self.split_1d_parallel_on_input(0, 1))
|
||||
|
||||
# RS = R x RS
|
||||
strategies.append(self.split_embedding_dim(0))
|
||||
strategies.append(self.split_embedding_dim(1))
|
||||
|
||||
# RS01 = R x RS01
|
||||
strategies.append(self.split_1d_parallel_on_embedding_dim(0, 1))
|
||||
|
||||
return strategies
|
Reference in New Issue
Block a user