mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-09 21:09:18 +00:00
[autoparallel]add embedding handler (#2089)
* [autoparallel] add embedding handler * fix bugs
This commit is contained in:
@@ -0,0 +1,286 @@
|
||||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler.embedding_handler import (
|
||||
EmbeddingFunctionHandler,
|
||||
EmbeddingModuleHandler,
|
||||
)
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||
from colossalai.utils import free_port
|
||||
from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy
|
||||
|
||||
NUM_EMBEDDINGS = 16
|
||||
EMBEDDING_DIMS = 32
|
||||
|
||||
|
||||
class EmbeddingModule(nn.Module):
|
||||
|
||||
def __init__(self, num_embeddings, embedding_dims):
|
||||
super().__init__()
|
||||
self.embedding = nn.Embedding(num_embeddings, embedding_dims)
|
||||
|
||||
def forward(self, input):
|
||||
x = self.embedding(input)
|
||||
return x
|
||||
|
||||
|
||||
def check_embedding_module_handler(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
model = EmbeddingModule(num_embeddings=NUM_EMBEDDINGS, embedding_dims=EMBEDDING_DIMS).cuda()
|
||||
# graph():
|
||||
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
|
||||
# %embedding : [#users=1] = call_module[target=embedding](args = (%input_1,), kwargs = {})
|
||||
# return embedding
|
||||
input = torch.rand(4, 16, 16) * NUM_EMBEDDINGS
|
||||
input = input.to(torch.int64).cuda()
|
||||
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
# index of embedding node in computation graph
|
||||
node_index = 1
|
||||
# total number of embedding strategies
|
||||
strategy_number = 19
|
||||
numerical_test_for_node_strategy(model=model,
|
||||
device_mesh=device_mesh,
|
||||
node_index=node_index,
|
||||
strategy_number=strategy_number,
|
||||
input_args=[input],
|
||||
meta_arg_names=['input'])
|
||||
|
||||
tracer = ColoTracer()
|
||||
graph = tracer.trace(model, meta_args={"input": torch.rand(4, 16, 16).to('meta')})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
embedding_node = list(graph.nodes)[1]
|
||||
strategies_vector = StrategiesVector(embedding_node)
|
||||
|
||||
# build handler
|
||||
handler = EmbeddingModuleHandler(node=embedding_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
|
||||
|
||||
# check operation data mapping
|
||||
mapping = handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.logical_shape is not None
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['input'].name == "input_1"
|
||||
# assert mapping['input'].data.is_meta
|
||||
assert mapping['input'].data.shape == torch.Size([4, 16, 16])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([1024])
|
||||
|
||||
assert mapping['other'].name == "weight"
|
||||
assert mapping['other'].data.shape == torch.Size([NUM_EMBEDDINGS, EMBEDDING_DIMS])
|
||||
assert mapping['other'].type == OperationDataType.PARAM
|
||||
assert mapping['other'].logical_shape == torch.Size([NUM_EMBEDDINGS, EMBEDDING_DIMS])
|
||||
|
||||
assert mapping['output'].name == "embedding"
|
||||
assert mapping['output'].data.shape == torch.Size([4, 16, 16, EMBEDDING_DIMS])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
assert mapping['output'].logical_shape == torch.Size([1024, EMBEDDING_DIMS])
|
||||
|
||||
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
|
||||
# RR = RR x RR
|
||||
assert 'RR = R x RR' in strategy_name_list
|
||||
|
||||
# SR = SR x RR
|
||||
assert 'S0R = S0 x RR_0' in strategy_name_list
|
||||
assert 'S0R = S0 x RR_1' in strategy_name_list
|
||||
assert 'S0R = S0 x RR_2' in strategy_name_list
|
||||
assert 'S1R = S1 x RR_0' in strategy_name_list
|
||||
assert 'S1R = S1 x RR_1' in strategy_name_list
|
||||
assert 'S1R = S1 x RR_2' in strategy_name_list
|
||||
|
||||
# SS = SR x RS
|
||||
assert 'S0S1 = S0 x RS1_0' in strategy_name_list
|
||||
assert 'S0S1 = S0 x RS1_1' in strategy_name_list
|
||||
assert 'S0S1 = S0 x RS1_2' in strategy_name_list
|
||||
assert 'S1S0 = S1 x RS0_0' in strategy_name_list
|
||||
assert 'S1S0 = S1 x RS0_1' in strategy_name_list
|
||||
assert 'S1S0 = S1 x RS0_2' in strategy_name_list
|
||||
|
||||
# RS= RR x RS
|
||||
assert 'RS0 = R x RS0' in strategy_name_list
|
||||
assert 'RS1 = R x RS1' in strategy_name_list
|
||||
|
||||
# S01R = S01R x RR
|
||||
assert 'S01R = S01 x RR_0' in strategy_name_list
|
||||
assert 'S01R = S01 x RR_1' in strategy_name_list
|
||||
assert 'S01R = S01 x RR_2' in strategy_name_list
|
||||
|
||||
# RS01 = RR x RS01
|
||||
assert 'RS01 = R x RS01' in strategy_name_list
|
||||
|
||||
for strategy in strategies_vector:
|
||||
input_sharding_spec = strategy.get_sharding_spec_by_name('input_1')
|
||||
weight_sharding_spec = strategy.get_sharding_spec_by_name('weight')
|
||||
output_sharding_spec = strategy.get_sharding_spec_by_name('embedding')
|
||||
|
||||
# make sure the sharding matches across different operation data
|
||||
assert output_sharding_spec.sharding_sequence[-1] == weight_sharding_spec.sharding_sequence[-1]
|
||||
assert input_sharding_spec.sharding_sequence == output_sharding_spec.sharding_sequence[:-1]
|
||||
|
||||
|
||||
class EmbeddingFunction(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, input, others):
|
||||
x = nn.functional.embedding(input, others)
|
||||
return x
|
||||
|
||||
|
||||
def check_embedding_function_handler(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
model = EmbeddingFunction().cuda()
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
input = torch.rand(4, 16, 16) * NUM_EMBEDDINGS
|
||||
input = input.to(torch.int64).cuda()
|
||||
others = torch.rand(NUM_EMBEDDINGS, EMBEDDING_DIMS).cuda()
|
||||
input_args = [input, others]
|
||||
meta_arg_names = ['input', 'others']
|
||||
input_kwargs = {}
|
||||
# total number of embedding strategies
|
||||
strategy_number = 19
|
||||
node_index = 2
|
||||
numerical_test_for_node_strategy(model=model,
|
||||
device_mesh=device_mesh,
|
||||
node_index=node_index,
|
||||
strategy_number=strategy_number,
|
||||
input_args=input_args,
|
||||
meta_arg_names=meta_arg_names,
|
||||
input_kwargs=input_kwargs)
|
||||
tracer = ColoTracer()
|
||||
# graph():
|
||||
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
|
||||
# %others : torch.Tensor [#users=1] = placeholder[target=others]
|
||||
# %embedding : [#users=1] = call_function[target=torch.nn.functional.embedding](args = (%input_1, %others), kwargs = {padding_idx: None, max_norm: None, norm_type: 2.0, scale_grad_by_freq: False, sparse: False})
|
||||
# return embedding
|
||||
meta_args = {
|
||||
"input": torch.rand(4, 16, 16).to('meta'),
|
||||
"others": torch.rand(NUM_EMBEDDINGS, EMBEDDING_DIMS).to('meta')
|
||||
}
|
||||
graph = tracer.trace(model, meta_args=meta_args)
|
||||
gm = ColoGraphModule(model, graph)
|
||||
|
||||
embedding_node = list(graph.nodes)[2]
|
||||
strategies_vector = StrategiesVector(embedding_node)
|
||||
|
||||
# build handler
|
||||
handler = EmbeddingFunctionHandler(node=embedding_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=strategies_vector)
|
||||
|
||||
# check operation data mapping
|
||||
mapping = handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.logical_shape is not None
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['input'].name == "input_1"
|
||||
assert mapping['input'].data.is_meta
|
||||
assert mapping['input'].data.shape == torch.Size([4, 16, 16])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([1024])
|
||||
|
||||
assert mapping['other'].name == "others"
|
||||
assert mapping['other'].data.is_meta
|
||||
assert mapping['other'].data.shape == torch.Size([NUM_EMBEDDINGS, EMBEDDING_DIMS])
|
||||
assert mapping['other'].type == OperationDataType.ARG
|
||||
assert mapping['other'].logical_shape == torch.Size([NUM_EMBEDDINGS, EMBEDDING_DIMS])
|
||||
|
||||
assert mapping['output'].name == "embedding"
|
||||
assert mapping['output'].data.is_meta
|
||||
assert mapping['output'].data.shape == torch.Size([4, 16, 16, EMBEDDING_DIMS])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
assert mapping['output'].logical_shape == torch.Size([1024, EMBEDDING_DIMS])
|
||||
|
||||
handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
|
||||
# RR = RR x RR
|
||||
assert 'RR = R x RR' in strategy_name_list
|
||||
|
||||
# SR = SR x RR
|
||||
assert 'S0R = S0 x RR_0' in strategy_name_list
|
||||
assert 'S0R = S0 x RR_1' in strategy_name_list
|
||||
assert 'S0R = S0 x RR_2' in strategy_name_list
|
||||
assert 'S1R = S1 x RR_0' in strategy_name_list
|
||||
assert 'S1R = S1 x RR_1' in strategy_name_list
|
||||
assert 'S1R = S1 x RR_2' in strategy_name_list
|
||||
|
||||
# SS = SR x RS
|
||||
assert 'S0S1 = S0 x RS1_0' in strategy_name_list
|
||||
assert 'S0S1 = S0 x RS1_1' in strategy_name_list
|
||||
assert 'S0S1 = S0 x RS1_2' in strategy_name_list
|
||||
assert 'S1S0 = S1 x RS0_0' in strategy_name_list
|
||||
assert 'S1S0 = S1 x RS0_1' in strategy_name_list
|
||||
assert 'S1S0 = S1 x RS0_2' in strategy_name_list
|
||||
|
||||
# RS= RR x RS
|
||||
assert 'RS0 = R x RS0' in strategy_name_list
|
||||
assert 'RS1 = R x RS1' in strategy_name_list
|
||||
|
||||
# S01R = S01R x RR
|
||||
assert 'S01R = S01 x RR_0' in strategy_name_list
|
||||
assert 'S01R = S01 x RR_1' in strategy_name_list
|
||||
assert 'S01R = S01 x RR_2' in strategy_name_list
|
||||
|
||||
# RS01 = RR x RS01
|
||||
assert 'RS01 = R x RS01' in strategy_name_list
|
||||
|
||||
for strategy in strategies_vector:
|
||||
input_sharding_spec = strategy.get_sharding_spec_by_name('input_1')
|
||||
weight_sharding_spec = strategy.get_sharding_spec_by_name('others')
|
||||
output_sharding_spec = strategy.get_sharding_spec_by_name('embedding')
|
||||
|
||||
# make sure the sharding matches across different operation data
|
||||
assert output_sharding_spec.sharding_sequence[-1] == weight_sharding_spec.sharding_sequence[-1]
|
||||
assert input_sharding_spec.sharding_sequence == output_sharding_spec.sharding_sequence[:-1]
|
||||
|
||||
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_embedding_module_handler():
|
||||
world_size = 4
|
||||
run_func = partial(check_embedding_module_handler, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_embedding_function_handler():
|
||||
world_size = 4
|
||||
run_func = partial(check_embedding_function_handler, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_embedding_module_handler()
|
||||
test_embedding_function_handler()
|
@@ -13,7 +13,7 @@ from colossalai.auto_parallel.tensor_shard.solver.solver import Solver
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx.tracer.tracer import ColoTracer
|
||||
from colossalai.tensor.shape_consistency import to_global
|
||||
from colossalai.testing.comparison import assert_close, assert_close_loose
|
||||
from colossalai.testing.comparison import assert_close
|
||||
|
||||
|
||||
def _build_model_to_compare(model: torch.nn.Module, input_args: List[torch.Tensor],
|
||||
@@ -32,8 +32,12 @@ def _build_model_to_compare(model: torch.nn.Module, input_args: List[torch.Tenso
|
||||
param.register_hook(hook_fn)
|
||||
|
||||
arg_to_compare = copy.deepcopy(input_tensor)
|
||||
arg_to_compare.requires_grad = True
|
||||
wrapper(arg_to_compare, arg_index)
|
||||
|
||||
# only Tensors of floating point and complex dtype can require gradients
|
||||
if arg_to_compare.dtype != torch.int64:
|
||||
arg_to_compare.requires_grad = True
|
||||
wrapper(arg_to_compare, arg_index)
|
||||
|
||||
args_to_compare.append(arg_to_compare)
|
||||
|
||||
for name, input_kwarg in input_kwargs.items():
|
||||
@@ -46,8 +50,12 @@ def _build_model_to_compare(model: torch.nn.Module, input_args: List[torch.Tenso
|
||||
param.register_hook(hook_fn)
|
||||
|
||||
kwarg_to_compare = copy.deepcopy(input_kwarg)
|
||||
kwarg_to_compare.requires_grad = True
|
||||
wrapper(kwarg_to_compare, name)
|
||||
|
||||
# only Tensors of floating point and complex dtype can require gradients
|
||||
if kwarg_to_compare.dtype != torch.int64:
|
||||
kwarg_to_compare.requires_grad = True
|
||||
wrapper(kwarg_to_compare, name)
|
||||
|
||||
kwargs_to_compare[name] = kwarg_to_compare
|
||||
|
||||
return model_to_compare, args_to_compare, kwargs_to_compare
|
||||
@@ -160,7 +168,6 @@ def assert_close_helper(first: torch.Tensor,
|
||||
"""
|
||||
This method is used to check whether the average difference between two tensors is as close as expected.
|
||||
"""
|
||||
# average_diff_tensor = ((first - second)/(second+0.1)).sum()/second.numel()
|
||||
try:
|
||||
if isinstance(first, (tuple, list)):
|
||||
for first_element, second_element in zip(first, second):
|
||||
|
Reference in New Issue
Block a user