[misc] refactor launch API and tensor constructor (#5666)

* [misc] remove config arg from initialize

* [misc] remove old tensor contrusctor

* [plugin] add npu support for ddp

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [devops] fix doc test ci

* [test] fix test launch

* [doc] update launch doc

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Hongxin Liu
2024-04-29 10:40:11 +08:00
committed by GitHub
parent 91fa553775
commit 7f8b16635b
223 changed files with 294 additions and 403 deletions

View File

@@ -57,7 +57,7 @@ def main():
args = parse_args()
# Launch ColossalAI
colossalai.launch_from_torch(config={}, seed=args.seed)
colossalai.launch_from_torch(seed=args.seed)
coordinator = DistCoordinator()
config = MixtralConfig.from_pretrained(args.model_name)
@@ -96,7 +96,11 @@ def main():
if coordinator.rank == 0:
text = ["Hello my name is"]
else:
text = ["What's the largest country in the world?", "How many people live in China?", "帮我续写这首诗:离离原上草"]
text = [
"What's the largest country in the world?",
"How many people live in China?",
"帮我续写这首诗:离离原上草",
]
tokenizer.pad_token = tokenizer.unk_token
inputs = tokenizer(text, return_tensors="pt", padding=True).to(torch.cuda.current_device())

View File

@@ -50,7 +50,7 @@ def check_mixtral_moe_layer():
def run_dist(rank: int, world_size: int, port: int):
colossalai.launch({}, rank, world_size, "localhost", port)
colossalai.launch(rank, world_size, "localhost", port)
check_mixtral_moe_layer()

View File

@@ -133,7 +133,7 @@ def check_mixtral_moe_layer():
def run_dist(rank: int, world_size: int, port: int):
colossalai.launch({}, rank, world_size, "localhost", port)
colossalai.launch(rank, world_size, "localhost", port)
check_mixtral_moe_layer()

View File

@@ -145,7 +145,7 @@ def main():
args = parse_args()
# Launch ColossalAI
colossalai.launch_from_torch(config={}, seed=args.seed)
colossalai.launch_from_torch(seed=args.seed)
coordinator = DistCoordinator()
# Set plugin
@@ -195,9 +195,9 @@ def main():
lr_scheduler = CosineAnnealingWarmupLR(
optimizer=optimizer,
total_steps=args.num_epochs * len(dataloader),
warmup_steps=args.warmup_steps
if args.warmup_steps is not None
else int(args.num_epochs * len(dataloader) * 0.025),
warmup_steps=(
args.warmup_steps if args.warmup_steps is not None else int(args.num_epochs * len(dataloader) * 0.025)
),
eta_min=0.1 * args.lr,
)