[misc] refactor launch API and tensor constructor (#5666)

* [misc] remove config arg from initialize

* [misc] remove old tensor contrusctor

* [plugin] add npu support for ddp

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [devops] fix doc test ci

* [test] fix test launch

* [doc] update launch doc

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Hongxin Liu
2024-04-29 10:40:11 +08:00
committed by GitHub
parent 91fa553775
commit 7f8b16635b
223 changed files with 294 additions and 403 deletions

View File

@@ -45,7 +45,7 @@ We then need to initialize distributed environment. For demo purpose, we uses `l
parser = colossalai.get_default_parser()
args = parser.parse_args()
# launch from torch
colossalai.launch_from_torch(config=dict())
colossalai.launch_from_torch()
```
### Step 3. Create training components

View File

@@ -61,7 +61,7 @@ We then need to initialize distributed environment. For demo purpose, we uses `l
for other initialization methods.
```python
colossalai.launch_from_torch(config=dict())
colossalai.launch_from_torch()
logger = get_dist_logger()
```

View File

@@ -29,7 +29,7 @@ from colossalai.booster.plugin import GeminiPlugin
from transformers import LlamaForCausalLM, LlamaConfig, BertForPreTraining
colossalai.launch({})
colossalai.launch()
plugin = GeminiPlugin()
booster = Booster(plugin)

View File

@@ -20,10 +20,10 @@ In Colossal-AI, we have incorporated different implementations of mixed precisio
3. naive amp
| Colossal-AI | support tensor parallel | support pipeline parallel | fp16 extent |
| -------------- | ----------------------- | ------------------------- | ---------------------------------------------------------------------------------------------------- |
| AMP_TYPE.TORCH | ✅ | ❌ | Model parameters, activation, gradients are downcast to fp16 during forward and backward propagation |
| AMP_TYPE.APEX | ❌ | ❌ | More fine-grained, we can choose opt_level O0, O1, O2, O3 |
| AMP_TYPE.NAIVE | ✅ | ✅ | Model parameters, forward and backward operations are all downcast to fp16 |
|----------------|-------------------------|---------------------------|------------------------------------------------------------------------------------------------------|
| AMP_TYPE.TORCH | ✅ | ❌ | Model parameters, activation, gradients are downcast to fp16 during forward and backward propagation |
| AMP_TYPE.APEX | ❌ | ❌ | More fine-grained, we can choose opt_level O0, O1, O2, O3 |
| AMP_TYPE.NAIVE | ✅ | ✅ | Model parameters, forward and backward operations are all downcast to fp16 |
The first two rely on the original implementation of PyTorch (version 1.6 and above) and NVIDIA Apex.
The last method is similar to Apex O2 level.
@@ -164,7 +164,7 @@ parser = colossalai.get_default_parser()
args = parser.parse_args()
# launch from torch
colossalai.launch_from_torch(config=dict())
colossalai.launch_from_torch()
```

View File

@@ -185,7 +185,7 @@ Then we can train GPT model with Gemini. The placement policy of Gemini should b
```python
def train_gemini_cpu(nvme_offload_fraction: float = 0.0):
colossalai.launch_from_torch({})
colossalai.launch_from_torch()
config = GPT2Config()
with ColoInitContext(device=torch.cuda.current_device()):
model = GPT2LMHeadModel(config)

View File

@@ -174,7 +174,7 @@ def main():
SEQ_LEN = 1024
VOCAB_SIZE = 50257
NUM_STEPS = 10
colossalai.launch_from_torch(config={})
colossalai.launch_from_torch()
# build criterion
criterion = GPTLMLoss()