mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-03 01:55:12 +00:00
[autoparallel] adapt solver and CostGraph with new handler (#1695)
* [autoparallel] adapt solver and CostGraph with new handler * fix test issue
This commit is contained in:
@@ -5,8 +5,10 @@ from colossalai.fx import ColoTracer, ColoGraphModule
|
||||
from colossalai.auto_parallel.solver.op_handler.normal_pooling_handler import NormPoolingHandler
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.skip("for higher testing speed")
|
||||
def test_norm_pool_handler():
|
||||
model = nn.Sequential(nn.MaxPool2d(4, padding=1).to('meta'))
|
||||
tracer = ColoTracer()
|
||||
|
@@ -2,7 +2,7 @@ import torch
|
||||
import torch.nn as nn
|
||||
from colossalai.fx import ColoTracer, ColoGraphModule
|
||||
from colossalai.auto_parallel.solver.op_handler.conv_handler_v2 import ConvFunctionHandler
|
||||
from colossalai.auto_parallel.solver.op_handler.reshape_handler_v2 import ReshapeHandler
|
||||
from colossalai.auto_parallel.solver.op_handler.reshape_handler_v2 import ReshapeHandler_V2
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
|
||||
@@ -48,9 +48,9 @@ def test_reshape_handler():
|
||||
strategies_vector=conv_strategies_vector)
|
||||
conv_handler.register_strategy(compute_resharding_cost=False)
|
||||
setattr(conv_mod_node, 'strategies_vector', conv_strategies_vector)
|
||||
reshape_handler = ReshapeHandler(node=reshape_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=reshape_strategies_vector)
|
||||
reshape_handler = ReshapeHandler_V2(node=reshape_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=reshape_strategies_vector)
|
||||
|
||||
reshape_handler.register_strategy(compute_resharding_cost=False)
|
||||
|
||||
|
@@ -2,7 +2,7 @@ from colossalai.fx.tracer.meta_patch.patched_module import linear
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from colossalai.fx import ColoTracer, ColoGraphModule
|
||||
from colossalai.auto_parallel.solver.op_handler.unary_elementwise_handler_v2 import UnaryElementwiseHandler
|
||||
from colossalai.auto_parallel.solver.op_handler.unary_elementwise_handler_v2 import UnaryElementwiseHandler_V2
|
||||
from colossalai.auto_parallel.solver.op_handler.conv_handler_v2 import ConvFunctionHandler
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
@@ -50,9 +50,9 @@ def test_elementwise_handler():
|
||||
strategies_vector=conv_strategies_vector)
|
||||
conv_handler.register_strategy(compute_resharding_cost=False)
|
||||
setattr(conv_mod_node, 'strategies_vector', conv_strategies_vector)
|
||||
relu_handler = UnaryElementwiseHandler(node=relu_mod_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=relu_strategies_vector)
|
||||
relu_handler = UnaryElementwiseHandler_V2(node=relu_mod_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=relu_strategies_vector)
|
||||
|
||||
relu_handler.register_strategy(compute_resharding_cost=False)
|
||||
|
||||
|
99
tests/test_auto_parallel/test_solver_with_resnet_v2.py
Normal file
99
tests/test_auto_parallel/test_solver_with_resnet_v2.py
Normal file
@@ -0,0 +1,99 @@
|
||||
import torch
|
||||
from torch.fx import GraphModule
|
||||
import torch.nn as nn
|
||||
import pytest
|
||||
|
||||
from colossalai.fx.tracer.tracer import ColoTracer
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
|
||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor_V2
|
||||
from colossalai.auto_parallel.solver.cost_graph import CostGraph_V2
|
||||
from copy import deepcopy
|
||||
from colossalai.auto_parallel.solver.solver import Solver_V2
|
||||
from torchvision.models import resnet34, resnet50
|
||||
from colossalai.auto_parallel.solver.constants import *
|
||||
from colossalai.auto_parallel.solver.graph_analysis import GraphAnalyser
|
||||
from colossalai.auto_parallel.solver.options import SolverOptions
|
||||
|
||||
|
||||
@pytest.mark.skip("for higher testing speed")
|
||||
def test_cost_graph():
|
||||
physical_mesh_id = torch.arange(0, 8)
|
||||
mesh_shape = (2, 4)
|
||||
# [[0, 1]
|
||||
# [2, 3]]
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
shape_consistency_manager = ShapeConsistencyManager()
|
||||
|
||||
tracer = ColoTracer()
|
||||
model = resnet50(num_classes=100000)
|
||||
input_sample = {'x': torch.rand(128, 3, 224, 224).to('meta')}
|
||||
|
||||
graph = tracer.trace(root=model, meta_args=input_sample)
|
||||
# graph():
|
||||
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
||||
# %conv1 : [#users=1] = call_module[target=conv1](args = (%x,), kwargs = {})
|
||||
# %bn1 : [#users=1] = call_module[target=bn1](args = (%conv1,), kwargs = {})
|
||||
# %relu : [#users=1] = call_module[target=relu](args = (%bn1,), kwargs = {})
|
||||
# %maxpool : [#users=2] = call_module[target=maxpool](args = (%relu,), kwargs = {})
|
||||
# %layer1_0_conv1 : [#users=1] = call_module[target=layer1.0.conv1](args = (%maxpool,), kwargs = {})
|
||||
# %layer1_0_bn1 : [#users=1] = call_module[target=layer1.0.bn1](args = (%layer1_0_conv1,), kwargs = {})
|
||||
# %layer1_0_relu : [#users=1] = call_module[target=layer1.0.relu](args = (%layer1_0_bn1,), kwargs = {})
|
||||
# %layer1_0_conv2 : [#users=1] = call_module[target=layer1.0.conv2](args = (%layer1_0_relu,), kwargs = {})
|
||||
# %layer1_0_bn2 : [#users=1] = call_module[target=layer1.0.bn2](args = (%layer1_0_conv2,), kwargs = {})
|
||||
# %add : [#users=1] = call_function[target=operator.add](args = (%layer1_0_bn2, %maxpool), kwargs = {})
|
||||
# %layer1_0_relu_1 : [#users=2] = call_module[target=layer1.0.relu](args = (%add,), kwargs = {})
|
||||
# %layer1_1_conv1 : [#users=1] = call_module[target=layer1.1.conv1](args = (%layer1_0_relu_1,), kwargs = {})
|
||||
# %layer1_1_bn1 : [#users=1] = call_module[target=layer1.1.bn1](args = (%layer1_1_conv1,), kwargs = {})
|
||||
# %layer1_1_relu : [#users=1] = call_module[target=layer1.1.relu](args = (%layer1_1_bn1,), kwargs = {})
|
||||
# %layer1_1_conv2 : [#users=1] = call_module[target=layer1.1.conv2](args = (%layer1_1_relu,), kwargs = {})
|
||||
# %layer1_1_bn2 : [#users=1] = call_module[target=layer1.1.bn2](args = (%layer1_1_conv2,), kwargs = {})
|
||||
# %add_1 : [#users=1] = call_function[target=operator.add](args = (%layer1_1_bn2, %layer1_0_relu_1), kwargs = {})
|
||||
# ...
|
||||
# %avgpool : [#users=1] = call_module[target=avgpool](args = (%layer4_2_relu_1,), kwargs = {})
|
||||
# %flatten : [#users=1] = call_function[target=torch.flatten](args = (%avgpool, 1), kwargs = {})
|
||||
# %fc : [#users=1] = call_module[target=fc](args = (%flatten,), kwargs = {})
|
||||
# return fc
|
||||
gm = GraphModule(model, graph, model.__class__.__name__)
|
||||
gm.recompile()
|
||||
graph_analyser = GraphAnalyser(gm)
|
||||
liveness_list = graph_analyser.liveness_analysis()
|
||||
solver_options = SolverOptions(fast=True)
|
||||
strategies_constructor = StrategiesConstructor_V2(graph, device_mesh, solver_options)
|
||||
strategies_constructor.build_strategies_and_cost()
|
||||
|
||||
cost_graph = CostGraph_V2(strategies_constructor.leaf_strategies)
|
||||
cost_graph.simplify_graph()
|
||||
solver = Solver_V2(gm.graph, strategies_constructor, cost_graph, graph_analyser)
|
||||
|
||||
ret = solver.call_solver_serialized_args()
|
||||
print(ret[0])
|
||||
print(solver.last_s_val)
|
||||
strategies_list = solver.last_s_val
|
||||
|
||||
computation_cost = 0
|
||||
communication_cost = 0
|
||||
communication_cost_bn = 0
|
||||
memory_cost = 0
|
||||
for index, node in enumerate(graph.nodes):
|
||||
if node.op == 'call_module':
|
||||
submod = node.graph.owning_module.get_submodule(node.target)
|
||||
if type(submod) in BATCHNORM_MODULE_OP:
|
||||
communication_cost_bn += node.strategies_vector[strategies_list[index]].communication_cost.total
|
||||
print(node.name, node.strategies_vector[strategies_list[index]].name)
|
||||
computation_cost += node.strategies_vector[strategies_list[index]].compute_cost.total
|
||||
communication_cost += node.strategies_vector[strategies_list[index]].communication_cost.total
|
||||
node_memory_cost = node.strategies_vector[strategies_list[index]].memory_cost.total
|
||||
if isinstance(node_memory_cost, tuple):
|
||||
node_memory_cost = node_memory_cost[0]
|
||||
memory_cost += node_memory_cost.activation + node_memory_cost.parameter
|
||||
|
||||
print(f'computation cost is {computation_cost}')
|
||||
print(f'communication cost is {communication_cost}')
|
||||
print(f'memory cost is {memory_cost}')
|
||||
print(f'bn communication cost is {communication_cost_bn}')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_cost_graph()
|
Reference in New Issue
Block a user