mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-16 06:30:41 +00:00
[doc] add deepspeed citation and copyright (#2996)
* [doc] add deepspeed citation and copyright * [doc] add deepspeed citation and copyright * [doc] add deepspeed citation and copyright
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
/* Copyright 2021 The LightSeq Team
|
||||
Copyright Microsoft DeepSpeed
|
||||
This file is adapted from Microsoft DeepSpeed
|
||||
Licensed under the MIT License.
|
||||
*/
|
||||
#include "cublas_wrappers.h"
|
||||
|
||||
|
@@ -1,6 +1,7 @@
|
||||
/* Copyright 2021 The LightSeq Team
|
||||
Copyright Microsoft DeepSpeed
|
||||
This file is adapted from Microsoft DeepSpeed
|
||||
Licensed under the MIT License.
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
|
@@ -1,68 +1,69 @@
|
||||
#pragma once
|
||||
|
||||
/* Copyright 2021 The LightSeq Team
|
||||
Copyright Microsoft DeepSpeed
|
||||
This file is adapted from Microsoft DeepSpeed
|
||||
*/
|
||||
#include <cuda.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include <array>
|
||||
|
||||
#include "cublas_wrappers.h"
|
||||
#include "kernels.h"
|
||||
|
||||
template <typename T>
|
||||
class FeedForward {
|
||||
public:
|
||||
struct Config {
|
||||
int outputSize;
|
||||
int inputSize;
|
||||
std::array<int, 3> gemm_algos;
|
||||
Config(int outputs, int inputs)
|
||||
: outputSize(outputs),
|
||||
inputSize(inputs),
|
||||
gemm_algos(std::array<int, 3>({99, 99, 99})) {}
|
||||
};
|
||||
|
||||
FeedForward(Config config) : config_(config) {}
|
||||
|
||||
~FeedForward() {}
|
||||
|
||||
void Forward(int bsz, const T *input_ptr, const T *weights, T *out,
|
||||
cublasHandle_t &_cublasHandle) {
|
||||
float alpha = T(1.);
|
||||
float beta = T(0.);
|
||||
|
||||
cublas_gemm_ex(_cublasHandle, CUBLAS_OP_T, CUBLAS_OP_N, config_.outputSize,
|
||||
bsz, config_.inputSize, &alpha, &beta, weights, input_ptr,
|
||||
out, cublasGemmAlgo_t(config_.gemm_algos[0]));
|
||||
}
|
||||
void Backward(int bsz, const T *out_grad, const T *input_ptr,
|
||||
const T *weights, T *weights_grad, T *bias_grad,
|
||||
cublasHandle_t &_cublasHandle, cudaStream_t &stream,
|
||||
T *inp_grad_out = nullptr, T *out_grad_trans_out = nullptr,
|
||||
bool compute_bias = true) {
|
||||
float alpha = (T)1.0, beta = (T)0.0;
|
||||
cublas_gemm_ex(_cublasHandle, CUBLAS_OP_N, CUBLAS_OP_T, config_.inputSize,
|
||||
config_.outputSize, bsz, &alpha, &beta, input_ptr, out_grad,
|
||||
weights_grad, cublasGemmAlgo_t(config_.gemm_algos[1]));
|
||||
|
||||
cublas_gemm_ex(_cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, config_.inputSize,
|
||||
bsz, config_.outputSize, &alpha, &beta, weights, out_grad,
|
||||
inp_grad_out, cublasGemmAlgo_t(config_.gemm_algos[2]));
|
||||
if (compute_bias) {
|
||||
launch_fuse_transpose_bias_kernel<T>(out_grad, bias_grad, bsz,
|
||||
config_.outputSize, stream);
|
||||
}
|
||||
}
|
||||
|
||||
void reset_size(int outputSize, int inputSize) {
|
||||
config_.outputSize = outputSize;
|
||||
config_.inputSize = inputSize;
|
||||
}
|
||||
|
||||
private:
|
||||
Config config_;
|
||||
};
|
||||
#pragma once
|
||||
|
||||
/* Copyright 2021 The LightSeq Team
|
||||
Copyright Microsoft DeepSpeed
|
||||
This file is adapted from Microsoft DeepSpeed
|
||||
Licensed under the MIT License.
|
||||
*/
|
||||
#include <cuda.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include <array>
|
||||
|
||||
#include "cublas_wrappers.h"
|
||||
#include "kernels.h"
|
||||
|
||||
template <typename T>
|
||||
class FeedForward {
|
||||
public:
|
||||
struct Config {
|
||||
int outputSize;
|
||||
int inputSize;
|
||||
std::array<int, 3> gemm_algos;
|
||||
Config(int outputs, int inputs)
|
||||
: outputSize(outputs),
|
||||
inputSize(inputs),
|
||||
gemm_algos(std::array<int, 3>({99, 99, 99})) {}
|
||||
};
|
||||
|
||||
FeedForward(Config config) : config_(config) {}
|
||||
|
||||
~FeedForward() {}
|
||||
|
||||
void Forward(int bsz, const T *input_ptr, const T *weights, T *out,
|
||||
cublasHandle_t &_cublasHandle) {
|
||||
float alpha = T(1.);
|
||||
float beta = T(0.);
|
||||
|
||||
cublas_gemm_ex(_cublasHandle, CUBLAS_OP_T, CUBLAS_OP_N, config_.outputSize,
|
||||
bsz, config_.inputSize, &alpha, &beta, weights, input_ptr,
|
||||
out, cublasGemmAlgo_t(config_.gemm_algos[0]));
|
||||
}
|
||||
void Backward(int bsz, const T *out_grad, const T *input_ptr,
|
||||
const T *weights, T *weights_grad, T *bias_grad,
|
||||
cublasHandle_t &_cublasHandle, cudaStream_t &stream,
|
||||
T *inp_grad_out = nullptr, T *out_grad_trans_out = nullptr,
|
||||
bool compute_bias = true) {
|
||||
float alpha = (T)1.0, beta = (T)0.0;
|
||||
cublas_gemm_ex(_cublasHandle, CUBLAS_OP_N, CUBLAS_OP_T, config_.inputSize,
|
||||
config_.outputSize, bsz, &alpha, &beta, input_ptr, out_grad,
|
||||
weights_grad, cublasGemmAlgo_t(config_.gemm_algos[1]));
|
||||
|
||||
cublas_gemm_ex(_cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, config_.inputSize,
|
||||
bsz, config_.outputSize, &alpha, &beta, weights, out_grad,
|
||||
inp_grad_out, cublasGemmAlgo_t(config_.gemm_algos[2]));
|
||||
if (compute_bias) {
|
||||
launch_fuse_transpose_bias_kernel<T>(out_grad, bias_grad, bsz,
|
||||
config_.outputSize, stream);
|
||||
}
|
||||
}
|
||||
|
||||
void reset_size(int outputSize, int inputSize) {
|
||||
config_.outputSize = outputSize;
|
||||
config_.inputSize = inputSize;
|
||||
}
|
||||
|
||||
private:
|
||||
Config config_;
|
||||
};
|
||||
|
@@ -1,99 +1,100 @@
|
||||
/* Copyright 2021 The LightSeq Team
|
||||
Copyright Microsoft DeepSpeed
|
||||
This file is adapted from Microsoft DeepSpeed
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <cuda.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include <array>
|
||||
|
||||
#include "cublas_wrappers.h"
|
||||
|
||||
template <typename T>
|
||||
class StridedBatchGemm {
|
||||
public:
|
||||
struct Config {
|
||||
int m;
|
||||
int n;
|
||||
int k;
|
||||
float alpha;
|
||||
float beta;
|
||||
cublasOperation_t op_A;
|
||||
cublasOperation_t op_B;
|
||||
std::array<int, 3> gemm_algos;
|
||||
|
||||
Config(float param_alpha, float param_beta, cublasOperation_t opA,
|
||||
cublasOperation_t opB)
|
||||
: alpha(param_alpha),
|
||||
beta(param_beta),
|
||||
op_A(opA),
|
||||
op_B(opB),
|
||||
gemm_algos(std::array<int, 3>({99, 99, 99})) {}
|
||||
void SetConfig(int mm, int nn, int kk) {
|
||||
m = mm;
|
||||
n = nn;
|
||||
k = kk;
|
||||
}
|
||||
};
|
||||
|
||||
StridedBatchGemm(const Config &config) : _config(config) {}
|
||||
|
||||
virtual ~StridedBatchGemm() {}
|
||||
|
||||
void Forward(int bsz, T *output, const T *_buffer_a, const T *_buffer_b,
|
||||
cublasHandle_t handle) {
|
||||
int stride_a = _config.m * _config.k;
|
||||
int stride_b = _config.n * _config.k;
|
||||
int stride_c = _config.m * _config.n;
|
||||
|
||||
cublas_strided_batched_gemm(
|
||||
handle, _config.m, _config.n, _config.k, &_config.alpha, &_config.beta,
|
||||
_buffer_a, _buffer_b, output, _config.op_A, _config.op_B, stride_a,
|
||||
stride_b, stride_c, bsz, cublasGemmAlgo_t(_config.gemm_algos[0]));
|
||||
}
|
||||
|
||||
void Backward(int bsz, const T *d_output, const T *_buffer_a,
|
||||
const T *_buffer_b, cublasHandle_t handle,
|
||||
T *inpGradA = nullptr, T *inpGradB = nullptr) {
|
||||
int mb = (_config.op_A == CUBLAS_OP_T ? _config.k : _config.m);
|
||||
int kb = (_config.op_A == CUBLAS_OP_T ? _config.m : _config.k);
|
||||
|
||||
int stride_a = mb * _config.n;
|
||||
int stride_b = _config.n * kb;
|
||||
int stride_c = _config.m * _config.k;
|
||||
|
||||
// B need to transpose.
|
||||
cublasOperation_t op_b =
|
||||
(_config.op_B == CUBLAS_OP_T ? CUBLAS_OP_N : CUBLAS_OP_T);
|
||||
|
||||
// Calculate d_A.
|
||||
cublas_strided_batched_gemm(
|
||||
handle, mb, kb, _config.n, &_config.alpha, &_config.beta,
|
||||
(_config.op_A == CUBLAS_OP_T ? _buffer_b : d_output),
|
||||
(_config.op_A == CUBLAS_OP_T ? d_output : _buffer_b), inpGradA,
|
||||
CUBLAS_OP_N, op_b, stride_a, stride_b, stride_c, bsz,
|
||||
cublasGemmAlgo_t(_config.gemm_algos[1]));
|
||||
|
||||
// A need to transpose.
|
||||
cublasOperation_t op_a =
|
||||
(_config.op_A == CUBLAS_OP_T ? CUBLAS_OP_N : CUBLAS_OP_T);
|
||||
|
||||
stride_a = _config.m * _config.k;
|
||||
stride_b = _config.m * _config.n;
|
||||
stride_c = _config.n * _config.k;
|
||||
|
||||
// Calculate d_B.
|
||||
cublas_strided_batched_gemm(
|
||||
handle, _config.k, _config.n, _config.m, &_config.alpha, &_config.beta,
|
||||
_buffer_a, d_output, inpGradB, op_a, CUBLAS_OP_N, stride_a, stride_b,
|
||||
stride_c, bsz, cublasGemmAlgo_t(_config.gemm_algos[2]));
|
||||
}
|
||||
|
||||
inline void SetConfig(int m, int n, int k) { _config.SetConfig(m, n, k); }
|
||||
|
||||
private:
|
||||
Config _config;
|
||||
};
|
||||
/* Copyright 2021 The LightSeq Team
|
||||
Copyright Microsoft DeepSpeed
|
||||
This file is adapted from Microsoft DeepSpeed
|
||||
Licensed under the MIT License.
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <cuda.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include <array>
|
||||
|
||||
#include "cublas_wrappers.h"
|
||||
|
||||
template <typename T>
|
||||
class StridedBatchGemm {
|
||||
public:
|
||||
struct Config {
|
||||
int m;
|
||||
int n;
|
||||
int k;
|
||||
float alpha;
|
||||
float beta;
|
||||
cublasOperation_t op_A;
|
||||
cublasOperation_t op_B;
|
||||
std::array<int, 3> gemm_algos;
|
||||
|
||||
Config(float param_alpha, float param_beta, cublasOperation_t opA,
|
||||
cublasOperation_t opB)
|
||||
: alpha(param_alpha),
|
||||
beta(param_beta),
|
||||
op_A(opA),
|
||||
op_B(opB),
|
||||
gemm_algos(std::array<int, 3>({99, 99, 99})) {}
|
||||
void SetConfig(int mm, int nn, int kk) {
|
||||
m = mm;
|
||||
n = nn;
|
||||
k = kk;
|
||||
}
|
||||
};
|
||||
|
||||
StridedBatchGemm(const Config &config) : _config(config) {}
|
||||
|
||||
virtual ~StridedBatchGemm() {}
|
||||
|
||||
void Forward(int bsz, T *output, const T *_buffer_a, const T *_buffer_b,
|
||||
cublasHandle_t handle) {
|
||||
int stride_a = _config.m * _config.k;
|
||||
int stride_b = _config.n * _config.k;
|
||||
int stride_c = _config.m * _config.n;
|
||||
|
||||
cublas_strided_batched_gemm(
|
||||
handle, _config.m, _config.n, _config.k, &_config.alpha, &_config.beta,
|
||||
_buffer_a, _buffer_b, output, _config.op_A, _config.op_B, stride_a,
|
||||
stride_b, stride_c, bsz, cublasGemmAlgo_t(_config.gemm_algos[0]));
|
||||
}
|
||||
|
||||
void Backward(int bsz, const T *d_output, const T *_buffer_a,
|
||||
const T *_buffer_b, cublasHandle_t handle,
|
||||
T *inpGradA = nullptr, T *inpGradB = nullptr) {
|
||||
int mb = (_config.op_A == CUBLAS_OP_T ? _config.k : _config.m);
|
||||
int kb = (_config.op_A == CUBLAS_OP_T ? _config.m : _config.k);
|
||||
|
||||
int stride_a = mb * _config.n;
|
||||
int stride_b = _config.n * kb;
|
||||
int stride_c = _config.m * _config.k;
|
||||
|
||||
// B need to transpose.
|
||||
cublasOperation_t op_b =
|
||||
(_config.op_B == CUBLAS_OP_T ? CUBLAS_OP_N : CUBLAS_OP_T);
|
||||
|
||||
// Calculate d_A.
|
||||
cublas_strided_batched_gemm(
|
||||
handle, mb, kb, _config.n, &_config.alpha, &_config.beta,
|
||||
(_config.op_A == CUBLAS_OP_T ? _buffer_b : d_output),
|
||||
(_config.op_A == CUBLAS_OP_T ? d_output : _buffer_b), inpGradA,
|
||||
CUBLAS_OP_N, op_b, stride_a, stride_b, stride_c, bsz,
|
||||
cublasGemmAlgo_t(_config.gemm_algos[1]));
|
||||
|
||||
// A need to transpose.
|
||||
cublasOperation_t op_a =
|
||||
(_config.op_A == CUBLAS_OP_T ? CUBLAS_OP_N : CUBLAS_OP_T);
|
||||
|
||||
stride_a = _config.m * _config.k;
|
||||
stride_b = _config.m * _config.n;
|
||||
stride_c = _config.n * _config.k;
|
||||
|
||||
// Calculate d_B.
|
||||
cublas_strided_batched_gemm(
|
||||
handle, _config.k, _config.n, _config.m, &_config.alpha, &_config.beta,
|
||||
_buffer_a, d_output, inpGradB, op_a, CUBLAS_OP_N, stride_a, stride_b,
|
||||
stride_c, bsz, cublasGemmAlgo_t(_config.gemm_algos[2]));
|
||||
}
|
||||
|
||||
inline void SetConfig(int m, int n, int k) { _config.SetConfig(m, n, k); }
|
||||
|
||||
private:
|
||||
Config _config;
|
||||
};
|
||||
|
@@ -1,5 +1,10 @@
|
||||
// modified from
|
||||
// https://github.com/NVIDIA/apex/blob/master/csrc/multi_tensor_adam.cu
|
||||
/* Copyright 2020 The Microsoft DeepSpeed Team
|
||||
Copyright NVIDIA/apex
|
||||
This file is adapted from fused adam in NVIDIA/apex, commit a109f85
|
||||
Licensed under the MIT License.
|
||||
*/
|
||||
#include <ATen/ATen.h>
|
||||
#include <ATen/AccumulateType.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
|
@@ -1,12 +1,18 @@
|
||||
// modified from https://github.com/NVIDIA/apex/blob/master/csrc/multi_tensor_apply.cuh
|
||||
// modified from
|
||||
// https://github.com/NVIDIA/apex/blob/master/csrc/multi_tensor_apply.cuh
|
||||
/* Copyright 2020 The Microsoft DeepSpeed Team
|
||||
Copyright NVIDIA/apex
|
||||
This file is adapted from fused adam in NVIDIA/apex, commit a109f85
|
||||
Licensed under the MIT License.
|
||||
*/
|
||||
#include <ATen/ATen.h>
|
||||
#include <ATen/AccumulateType.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <ATen/cuda/Exceptions.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include "compat.h"
|
||||
|
||||
#include <assert.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
|
||||
#include "compat.h"
|
||||
|
||||
// #include <iostream>
|
||||
|
||||
@@ -17,117 +23,108 @@ constexpr int depth_to_max_tensors[5] = {110, 64, 48, 36, 30};
|
||||
constexpr int depth_to_max_blocks[5] = {320, 320, 320, 320, 320};
|
||||
|
||||
template <int n>
|
||||
struct TensorListMetadata
|
||||
{
|
||||
void *addresses[n][depth_to_max_tensors[n - 1]];
|
||||
int sizes[depth_to_max_tensors[n - 1]];
|
||||
unsigned char block_to_tensor[depth_to_max_blocks[n - 1]];
|
||||
int block_to_chunk[depth_to_max_blocks[n - 1]]; // I fear this needs to be a full int.
|
||||
int start_tensor_this_launch;
|
||||
struct TensorListMetadata {
|
||||
void *addresses[n][depth_to_max_tensors[n - 1]];
|
||||
int sizes[depth_to_max_tensors[n - 1]];
|
||||
unsigned char block_to_tensor[depth_to_max_blocks[n - 1]];
|
||||
int block_to_chunk[depth_to_max_blocks[n - 1]]; // I fear this needs to be a
|
||||
// full int.
|
||||
int start_tensor_this_launch;
|
||||
};
|
||||
|
||||
template <typename T, typename U, typename... ArgTypes>
|
||||
__global__ void multi_tensor_apply_kernel(
|
||||
int chunk_size,
|
||||
volatile int *noop_flag,
|
||||
T tl,
|
||||
U callable,
|
||||
ArgTypes... args)
|
||||
{
|
||||
// Hand the chunk information to the user-supplied functor to process however it likes.
|
||||
callable(chunk_size, noop_flag, tl, args...);
|
||||
__global__ void multi_tensor_apply_kernel(int chunk_size,
|
||||
volatile int *noop_flag, T tl,
|
||||
U callable, ArgTypes... args) {
|
||||
// Hand the chunk information to the user-supplied functor to process however
|
||||
// it likes.
|
||||
callable(chunk_size, noop_flag, tl, args...);
|
||||
}
|
||||
|
||||
template <int depth, typename T, typename... ArgTypes>
|
||||
void multi_tensor_apply(
|
||||
int block_size,
|
||||
int chunk_size,
|
||||
const at::Tensor &noop_flag,
|
||||
const std::vector<std::vector<at::Tensor>> &tensor_lists,
|
||||
T callable,
|
||||
ArgTypes... args)
|
||||
{
|
||||
TORCH_CHECK(tensor_lists.size() == depth, "tensor_lists.size() != depth");
|
||||
int len0 = tensor_lists[0].size();
|
||||
TORCH_CHECK(len0 > 0, "tensor_lists[0].size() is not > 0");
|
||||
auto ref_device = tensor_lists[0][0].device();
|
||||
TORCH_CHECK(ref_device.type() == at::kCUDA, "expected input to be on cuda");
|
||||
for (int l = 0; l < tensor_lists.size(); l++) // No range-based for because I need indices
|
||||
{
|
||||
TORCH_CHECK(tensor_lists[l].size() == len0, "Size mismatch among tensor lists");
|
||||
for (int t = 0; t < tensor_lists[l].size(); t++)
|
||||
{
|
||||
// TODO: Print which tensor fails.
|
||||
bool contiguous_memory = tensor_lists[l][t].is_contiguous();
|
||||
int block_size, int chunk_size, const at::Tensor &noop_flag,
|
||||
const std::vector<std::vector<at::Tensor>> &tensor_lists, T callable,
|
||||
ArgTypes... args) {
|
||||
TORCH_CHECK(tensor_lists.size() == depth, "tensor_lists.size() != depth");
|
||||
int len0 = tensor_lists[0].size();
|
||||
TORCH_CHECK(len0 > 0, "tensor_lists[0].size() is not > 0");
|
||||
auto ref_device = tensor_lists[0][0].device();
|
||||
TORCH_CHECK(ref_device.type() == at::kCUDA, "expected input to be on cuda");
|
||||
for (int l = 0; l < tensor_lists.size();
|
||||
l++) // No range-based for because I need indices
|
||||
{
|
||||
TORCH_CHECK(tensor_lists[l].size() == len0,
|
||||
"Size mismatch among tensor lists");
|
||||
for (int t = 0; t < tensor_lists[l].size(); t++) {
|
||||
// TODO: Print which tensor fails.
|
||||
bool contiguous_memory = tensor_lists[l][t].is_contiguous();
|
||||
#ifdef VERSION_GE_1_5
|
||||
contiguous_memory = (contiguous_memory || tensor_lists[l][t].is_contiguous(at::MemoryFormat::ChannelsLast));
|
||||
contiguous_memory =
|
||||
(contiguous_memory ||
|
||||
tensor_lists[l][t].is_contiguous(at::MemoryFormat::ChannelsLast));
|
||||
#endif
|
||||
TORCH_CHECK(contiguous_memory, "A tensor was not contiguous.");
|
||||
TORCH_CHECK(tensor_lists[l][t].device() == ref_device, "A tensor was not on the same device as the first tensor");
|
||||
TORCH_CHECK(tensor_lists[l][t].numel() == tensor_lists[0][t].numel(), "Size mismatch");
|
||||
}
|
||||
TORCH_CHECK(contiguous_memory, "A tensor was not contiguous.");
|
||||
TORCH_CHECK(tensor_lists[l][t].device() == ref_device,
|
||||
"A tensor was not on the same device as the first tensor");
|
||||
TORCH_CHECK(tensor_lists[l][t].numel() == tensor_lists[0][t].numel(),
|
||||
"Size mismatch");
|
||||
}
|
||||
}
|
||||
|
||||
int ntensors = tensor_lists[0].size();
|
||||
int ntensors = tensor_lists[0].size();
|
||||
|
||||
TensorListMetadata<depth> tl;
|
||||
TensorListMetadata<depth> tl;
|
||||
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(tensor_lists[0][0]));
|
||||
auto stream = at::cuda::getCurrentCUDAStream();
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(tensor_lists[0][0]));
|
||||
auto stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
tl.start_tensor_this_launch = 0;
|
||||
int loc_block_info = 0;
|
||||
int loc_tensor_info = 0;
|
||||
for (int t = 0; t < ntensors; t++)
|
||||
{
|
||||
tl.sizes[loc_tensor_info] = tensor_lists[0][t].numel();
|
||||
for (int d = 0; d < depth; d++)
|
||||
tl.addresses[d][loc_tensor_info] = tensor_lists[d][t].data_ptr();
|
||||
loc_tensor_info++;
|
||||
tl.start_tensor_this_launch = 0;
|
||||
int loc_block_info = 0;
|
||||
int loc_tensor_info = 0;
|
||||
for (int t = 0; t < ntensors; t++) {
|
||||
tl.sizes[loc_tensor_info] = tensor_lists[0][t].numel();
|
||||
for (int d = 0; d < depth; d++)
|
||||
tl.addresses[d][loc_tensor_info] = tensor_lists[d][t].data_ptr();
|
||||
loc_tensor_info++;
|
||||
|
||||
int chunks_this_tensor = (tensor_lists[0][t].numel() + chunk_size - 1) / chunk_size;
|
||||
int chunks_this_tensor =
|
||||
(tensor_lists[0][t].numel() + chunk_size - 1) / chunk_size;
|
||||
|
||||
for (int chunk = 0; chunk < chunks_this_tensor; chunk++)
|
||||
{
|
||||
// std::cout << chunks_this_tensor << std::endl;
|
||||
tl.block_to_tensor[loc_block_info] = loc_tensor_info - 1;
|
||||
tl.block_to_chunk[loc_block_info] = chunk;
|
||||
loc_block_info++;
|
||||
for (int chunk = 0; chunk < chunks_this_tensor; chunk++) {
|
||||
// std::cout << chunks_this_tensor << std::endl;
|
||||
tl.block_to_tensor[loc_block_info] = loc_tensor_info - 1;
|
||||
tl.block_to_chunk[loc_block_info] = chunk;
|
||||
loc_block_info++;
|
||||
|
||||
bool tensors_full = (loc_tensor_info == depth_to_max_tensors[depth - 1] &&
|
||||
chunk == chunks_this_tensor - 1);
|
||||
bool blocks_full = (loc_block_info == depth_to_max_blocks[depth - 1]);
|
||||
bool last_chunk = (t == ntensors - 1 && chunk == chunks_this_tensor - 1);
|
||||
if (tensors_full || blocks_full || last_chunk)
|
||||
{
|
||||
// using accscalar_t = acc_type<scalar_t, true>;
|
||||
multi_tensor_apply_kernel<<<loc_block_info, block_size, 0, stream>>>(
|
||||
chunk_size,
|
||||
noop_flag.DATA_PTR<int>(),
|
||||
tl,
|
||||
callable,
|
||||
args...);
|
||||
bool tensors_full = (loc_tensor_info == depth_to_max_tensors[depth - 1] &&
|
||||
chunk == chunks_this_tensor - 1);
|
||||
bool blocks_full = (loc_block_info == depth_to_max_blocks[depth - 1]);
|
||||
bool last_chunk = (t == ntensors - 1 && chunk == chunks_this_tensor - 1);
|
||||
if (tensors_full || blocks_full || last_chunk) {
|
||||
// using accscalar_t = acc_type<scalar_t, true>;
|
||||
multi_tensor_apply_kernel<<<loc_block_info, block_size, 0, stream>>>(
|
||||
chunk_size, noop_flag.DATA_PTR<int>(), tl, callable, args...);
|
||||
|
||||
AT_CUDA_CHECK(cudaGetLastError());
|
||||
AT_CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Reset. The control flow possibilities here make my brain hurt.
|
||||
loc_block_info = 0;
|
||||
if (chunk == chunks_this_tensor - 1)
|
||||
{
|
||||
// std::cout << "Hit case 1 " << cond1 << " " << cond2 << " " << cond3 << std::endl;
|
||||
loc_tensor_info = 0;
|
||||
tl.start_tensor_this_launch = t + 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
// std::cout << "Hit case 2 " << cond1 << " " << cond2 << " " << cond3 << std::endl;
|
||||
tl.sizes[0] = tl.sizes[loc_tensor_info - 1];
|
||||
for (int d = 0; d < depth; d++)
|
||||
tl.addresses[d][0] = tl.addresses[d][loc_tensor_info - 1];
|
||||
loc_tensor_info = 1;
|
||||
tl.start_tensor_this_launch = t;
|
||||
}
|
||||
}
|
||||
// Reset. The control flow possibilities here make my brain hurt.
|
||||
loc_block_info = 0;
|
||||
if (chunk == chunks_this_tensor - 1) {
|
||||
// std::cout << "Hit case 1 " << cond1 << " " << cond2 << " " << cond3
|
||||
// << std::endl;
|
||||
loc_tensor_info = 0;
|
||||
tl.start_tensor_this_launch = t + 1;
|
||||
} else {
|
||||
// std::cout << "Hit case 2 " << cond1 << " " << cond2 << " " << cond3
|
||||
// << std::endl;
|
||||
tl.sizes[0] = tl.sizes[loc_tensor_info - 1];
|
||||
for (int d = 0; d < depth; d++)
|
||||
tl.addresses[d][0] = tl.addresses[d][loc_tensor_info - 1];
|
||||
loc_tensor_info = 1;
|
||||
tl.start_tensor_this_launch = t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -1,4 +1,9 @@
|
||||
/* Taken from NVIDIA/apex commit 855808f3fc268e9715d613f3c2e56469d8c986d8 */
|
||||
/* Copyright 2020 The Microsoft DeepSpeed Team
|
||||
Copyright NVIDIA/apex
|
||||
This file is adapted from fused adam in NVIDIA/apex, commit a109f85
|
||||
Licensed under the MIT License.
|
||||
*/
|
||||
#include <ATen/ATen.h>
|
||||
|
||||
#include "compat.h"
|
||||
|
Reference in New Issue
Block a user