mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-12 12:47:21 +00:00
[autoparallel] adapt solver with resnet (#1583)
* [autoparallel]adapt solver with resnet * polish code * polish code
This commit is contained in:
119
tests/test_auto_parallel/test_batch_norm_handler.py
Normal file
119
tests/test_auto_parallel/test_batch_norm_handler.py
Normal file
@@ -0,0 +1,119 @@
|
||||
import torch
|
||||
from torch.fx import GraphModule
|
||||
import torch.nn as nn
|
||||
import pytest
|
||||
|
||||
from colossalai.fx.proxy import ColoProxy
|
||||
from colossalai.fx.tracer.tracer import ColoTracer
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
|
||||
from colossalai.auto_parallel.solver.op_handler.batch_norm_handler import BatchNormHandler
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
|
||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
|
||||
|
||||
class BNModel(nn.Module):
|
||||
|
||||
def __init__(self, c):
|
||||
super().__init__()
|
||||
self.bn = nn.BatchNorm2d(c)
|
||||
|
||||
def forward(self, x):
|
||||
x = x * 2
|
||||
x = self.bn(x)
|
||||
return x
|
||||
|
||||
|
||||
def test_bn_handler():
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
# [[0, 1]
|
||||
# [2, 3]]
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
entire_shape = torch.Size((4, 16, 64, 64))
|
||||
shape_consistency_manager = ShapeConsistencyManager()
|
||||
|
||||
tracer = ColoTracer()
|
||||
model = BNModel(16)
|
||||
input_sample = {'x': torch.rand(4, 16, 64, 64).to('meta')}
|
||||
# graph():
|
||||
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
||||
# %mul : [#users=1] = call_function[target=operator.mul](args = (%x, 2), kwargs = {})
|
||||
# %bn : [#users=1] = call_module[target=bn](args = (%mul,), kwargs = {})
|
||||
# return bn
|
||||
graph = tracer.trace(root=model, meta_args=input_sample)
|
||||
gm = GraphModule(model, graph, model.__class__.__name__)
|
||||
gm.recompile()
|
||||
# [x, mul, bn, output]
|
||||
nodes = [node for node in gm.graph.nodes]
|
||||
|
||||
# find the sharding strategies for the input node of the bn node
|
||||
# strategies_for_input = [[R, R, R, R], [R, S0, R, R], [R, S1, R, R], [S0, R, R, R], [S0, S1, R, R], [S1, R, R, R], [S1, S0, R, R]]
|
||||
strategies_vector_for_input = StrategiesVector(nodes[1])
|
||||
sharding_option = (None, 0, 1)
|
||||
for first_sharding_index in sharding_option:
|
||||
for second_sharding_index in sharding_option:
|
||||
if first_sharding_index is not None and second_sharding_index == first_sharding_index:
|
||||
continue
|
||||
if first_sharding_index is None:
|
||||
first_dim_spec = _DimSpec([])
|
||||
else:
|
||||
first_dim_spec = _DimSpec([first_sharding_index])
|
||||
|
||||
if second_sharding_index is None:
|
||||
second_dim_spec = _DimSpec([])
|
||||
else:
|
||||
second_dim_spec = _DimSpec([second_sharding_index])
|
||||
|
||||
replica_dim_spec = _DimSpec([])
|
||||
sharding_sequence = [first_dim_spec, second_dim_spec, replica_dim_spec, replica_dim_spec]
|
||||
sharding_spec = ShardingSpec(device_mesh=device_mesh,
|
||||
entire_shape=entire_shape,
|
||||
sharding_sequence=sharding_sequence)
|
||||
strategy_name = str(sharding_spec.sharding_sequence)
|
||||
sharding_strategy = ShardingStrategy(name=strategy_name, output_sharding_spec=sharding_spec)
|
||||
strategies_vector_for_input.append(sharding_strategy)
|
||||
setattr(nodes[1], 'strategies_vector', strategies_vector_for_input)
|
||||
|
||||
# generate bn strategy
|
||||
strategies_vector = StrategiesVector(node=nodes[2])
|
||||
bn_handler = BatchNormHandler(node=nodes[2],
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=strategies_vector,
|
||||
shape_consistency_manager=shape_consistency_manager)
|
||||
bn_handler.register_strategy()
|
||||
# ['RS0 = RS0 x S0', 'S1S0 = RS0 x S0', 'RS1 = RS1 x S1', 'S0S1 = RS1 x S1', 'RR = RR x R', 'S0R = RR x R', 'S1R = RR x R', 'S01R = RR x R', 'RS01 = RS01 x S01',
|
||||
# 'S0R = S0R x R WITH SYNC_BN', 'S1R = S1R x R WITH SYNC_BN', 'S0S1 = S0S1 x S1 WITH SYNC_BN', 'S1S0 = S1S0 x S0 WITH SYNC_BN', 'S01R = S01R x R WITH SYNC_BN']
|
||||
strategy_name_list = [strategy.name for strategy in bn_handler.strategies_vector]
|
||||
|
||||
# RS = RS x S and strategies based on it, such as
|
||||
# SS = RS x S
|
||||
assert 'RS0 = RS0 x S0' in strategy_name_list
|
||||
assert 'S1S0 = RS0 x S0' in strategy_name_list
|
||||
assert 'RS1 = RS1 x S1' in strategy_name_list
|
||||
assert 'S0S1 = RS1 x S1' in strategy_name_list
|
||||
|
||||
# RR = RR x R and strategies based on it, such as
|
||||
# SR = SR x R
|
||||
assert 'RR = RR x R' in strategy_name_list
|
||||
assert 'S0R = RR x R' in strategy_name_list
|
||||
assert 'S1R = RR x R' in strategy_name_list
|
||||
assert 'S01R = RR x R' in strategy_name_list
|
||||
|
||||
# RS01 = RS01 x S01
|
||||
assert 'RS01 = RS01 x S01' in strategy_name_list
|
||||
|
||||
# SR = SR x R WITH SYNC_BN
|
||||
assert 'S0R = S0R x R WITH SYNC_BN' in strategy_name_list
|
||||
assert 'S1R = S1R x R WITH SYNC_BN' in strategy_name_list
|
||||
|
||||
# SS = SS x S WITH SYNC_BN
|
||||
assert 'S0S1 = S0S1 x S1 WITH SYNC_BN' in strategy_name_list
|
||||
assert 'S1S0 = S1S0 x S0 WITH SYNC_BN' in strategy_name_list
|
||||
|
||||
# S01R = S01R x R WITH SYNC_BN
|
||||
assert 'S01R = S01R x R WITH SYNC_BN' in strategy_name_list
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_bn_handler()
|
@@ -6,7 +6,7 @@ import pytest
|
||||
from colossalai.fx.proxy import ColoProxy
|
||||
from colossalai.fx.tracer.tracer import ColoTracer
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
|
||||
from colossalai.auto_parallel.solver.conv_handler import ConvHandler
|
||||
from colossalai.auto_parallel.solver.op_handler.conv_handler import ConvHandler
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
|
||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
|
@@ -6,8 +6,6 @@ import pytest
|
||||
from colossalai.fx.proxy import ColoProxy
|
||||
from colossalai.fx.tracer.tracer import ColoTracer
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
|
||||
from colossalai.auto_parallel.solver.conv_handler import ConvHandler, CONV_STRATEGIES_LIST
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
|
||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor
|
||||
|
@@ -6,7 +6,7 @@ import pytest
|
||||
from colossalai.fx.proxy import ColoProxy
|
||||
from colossalai.fx.tracer.tracer import ColoTracer
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
|
||||
from colossalai.auto_parallel.solver.dot_handler import DotHandler
|
||||
from colossalai.auto_parallel.solver.op_handler.dot_handler import DotHandler
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
|
||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
|
@@ -32,21 +32,21 @@ def test_liveness_analysis():
|
||||
gm = ColoGraphModule(root=model, graph=graph, class_name=model.__class__.__name__)
|
||||
|
||||
graph_analyser = GraphAnalyser(gm)
|
||||
liveness_dict = graph_analyser.liveness_analysis()
|
||||
stage_count = len(liveness_dict)
|
||||
liveness_list = graph_analyser.liveness_analysis()
|
||||
stage_count = len(liveness_list)
|
||||
|
||||
# 8 stages including input and output
|
||||
assert stage_count == 8
|
||||
# if a LiveStage is covered by another LiveStage, we just keep the larger one.
|
||||
assert stage_count == 1
|
||||
|
||||
# a variable named `relu` must exist
|
||||
# and this live var must have inplace = True
|
||||
assert liveness_dict[5].all_live_vars.exists('relu')
|
||||
relu_var = liveness_dict[5].all_live_vars.get('relu')
|
||||
assert liveness_list[0].all_live_vars.exists('relu')
|
||||
relu_var = liveness_list[0].all_live_vars.get('relu')
|
||||
assert relu_var.is_inplace
|
||||
|
||||
# the unique vars must be fewer than the all vars since in-place ops exist
|
||||
all_live_vars = liveness_dict[7].all_live_vars
|
||||
unique_live_vars = liveness_dict[7].unique_live_vars
|
||||
all_live_vars = liveness_list[0].all_live_vars
|
||||
unique_live_vars = liveness_list[0].unique_live_vars
|
||||
assert len(unique_live_vars) + 1 == len(all_live_vars)
|
||||
|
||||
|
||||
|
78
tests/test_auto_parallel/test_solver.py
Normal file
78
tests/test_auto_parallel/test_solver.py
Normal file
@@ -0,0 +1,78 @@
|
||||
import torch
|
||||
from torch.fx import GraphModule
|
||||
import torch.nn as nn
|
||||
import pytest
|
||||
|
||||
from colossalai.fx.tracer.tracer import ColoTracer
|
||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor
|
||||
from colossalai.auto_parallel.solver.cost_graph import CostGraph
|
||||
from colossalai.auto_parallel.solver.graph_analysis import GraphAnalyser
|
||||
from copy import deepcopy
|
||||
from colossalai.auto_parallel.solver import Solver
|
||||
|
||||
|
||||
class ConvModel(nn.Module):
|
||||
|
||||
def __init__(self, c_in, c_out):
|
||||
super().__init__()
|
||||
self.conv1 = nn.Conv2d(c_in, c_out, kernel_size=3)
|
||||
self.conv2 = nn.Conv2d(c_out, c_out, kernel_size=3)
|
||||
self.conv3 = nn.Conv2d(c_out, c_out, kernel_size=3)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def forward(self, x):
|
||||
x = x * 2
|
||||
x = self.conv1(x)
|
||||
x = self.conv2(x)
|
||||
x = x / 2
|
||||
x = self.conv3(x)
|
||||
x = self.relu(x)
|
||||
return x
|
||||
|
||||
|
||||
@pytest.mark.skip("for higher testing speed")
|
||||
def test_solver():
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
# [[0, 1]
|
||||
# [2, 3]]
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
entire_shape = torch.Size((4, 16, 64, 64))
|
||||
shape_consistency_manager = ShapeConsistencyManager()
|
||||
|
||||
tracer = ColoTracer()
|
||||
model = ConvModel(16, 32)
|
||||
input_sample = {'x': torch.rand(4, 16, 64, 64).to('meta')}
|
||||
|
||||
# graph():
|
||||
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
||||
# %mul : [#users=1] = call_function[target=operator.mul](args = (%x, 2), kwargs = {})
|
||||
# %conv1 : [#users=1] = call_module[target=conv1](args = (%mul,), kwargs = {})
|
||||
# %conv2 : [#users=1] = call_module[target=conv2](args = (%conv1,), kwargs = {})
|
||||
# %truediv : [#users=1] = call_function[target=operator.truediv](args = (%conv2, 2), kwargs = {})
|
||||
# %conv3 : [#users=1] = call_module[target=conv3](args = (%truediv,), kwargs = {})
|
||||
# %relu : [#users=1] = call_module[target=relu](args = (%conv3,), kwargs = {})
|
||||
# return relu
|
||||
graph = tracer.trace(root=model, meta_args=input_sample)
|
||||
gm = GraphModule(model, graph, model.__class__.__name__)
|
||||
gm.recompile()
|
||||
|
||||
solver_options = {'fast_mode': True}
|
||||
strategies_constructor = StrategiesConstructor(graph, device_mesh, shape_consistency_manager, solver_options)
|
||||
strategies_constructor.build_strategies_and_cost()
|
||||
|
||||
cost_graph = CostGraph(strategies_constructor.leaf_strategies)
|
||||
cost_graph.simplify_graph()
|
||||
graph_analyser = GraphAnalyser(gm)
|
||||
solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser)
|
||||
ret = solver.call_solver_serialized_args()
|
||||
|
||||
# [ 0 0 13 13 13 13 13 0]
|
||||
strategies_combination_list = ret[0]
|
||||
assert solver.leaf_strategies[2][13].name == 'S01R = S01R x RR'
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_solver()
|
@@ -6,7 +6,7 @@ import pytest
|
||||
from colossalai.fx.proxy import ColoProxy
|
||||
from colossalai.fx.tracer.tracer import ColoTracer
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
|
||||
from colossalai.auto_parallel.solver.conv_handler import ConvHandler, CONV_STRATEGIES_LIST
|
||||
from colossalai.auto_parallel.solver.op_handler.conv_handler import CONV_STRATEGIES_LIST
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
|
||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
|
Reference in New Issue
Block a user