mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-16 06:30:41 +00:00
[zero]support zero2 with gradient accumulation (#4511)
* support gradient accumulation with zero2 * fix type
This commit is contained in:
@@ -57,8 +57,8 @@ class GradientStore(BaseStore):
|
||||
self._grads_of_params[group_id][param_id].append(grad)
|
||||
|
||||
def add_gradients_by_param_id(self, grad: Tensor, grad_idx: int, group_id: int, param_id: int):
|
||||
"""For old gradient accumulation, not in use now.
|
||||
Add a gradient slice on an existing slice of the parameter's gradient
|
||||
"""Add a gradient slice on an existing slice of the parameter's gradient
|
||||
Used when no_sync is not activated.
|
||||
|
||||
Args:
|
||||
grad (Tensor): The split gradient to append to list
|
||||
|
@@ -277,7 +277,11 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
|
||||
sync_tensor(flat_grads_per_rank[rank], grad_list)
|
||||
for grad in grad_list:
|
||||
param_id = self._bucket_store.get_param_id_of_grad(grad)
|
||||
self._grad_store.append_gradients_by_param_id(grad, group_id, param_id)
|
||||
if len(self._grad_store.get_partitioned_gradients_by_param_id(group_id,
|
||||
param_id)) < self._world_size:
|
||||
self._grad_store.append_gradients_by_param_id(grad, group_id, param_id)
|
||||
else:
|
||||
self._grad_store.add_gradients_by_param_id(grad, rank, group_id, param_id)
|
||||
|
||||
else:
|
||||
flat_grads_list = list(flat_grads.split(len(flat_grads) // self._world_size))
|
||||
@@ -291,7 +295,10 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
|
||||
sync_tensor(recieved_grad, grad_in_bucket_current_rank)
|
||||
for grad in grad_in_bucket_current_rank:
|
||||
param_id = self._bucket_store.get_param_id_of_grad(grad)
|
||||
self._grad_store.append_gradients_by_param_id(grad, group_id, param_id)
|
||||
if len(self._grad_store.get_partitioned_gradients_by_param_id(group_id, param_id)) < 1:
|
||||
self._grad_store.append_gradients_by_param_id(grad, group_id, param_id)
|
||||
else:
|
||||
self._grad_store.add_gradients_by_param_id(grad, 0, group_id, param_id)
|
||||
|
||||
self._bucket_store.reset()
|
||||
|
||||
@@ -315,7 +322,7 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
|
||||
|
||||
def backward(self, loss, retain_graph=False):
|
||||
assert not(self._partition_grads and not self.require_grad_sync), \
|
||||
"ZeRO2(partition_grads) and gradient accumulation(no_sync) are not compatible"
|
||||
"ZeRO2(partition_grads) and no_sync are not compatible"
|
||||
|
||||
if self.mixed_precision_mixin is not None:
|
||||
loss = self.mixed_precision_mixin.pre_backward(loss)
|
||||
|
@@ -1,5 +1,41 @@
|
||||
# Low Level ZeRO
|
||||
>Low Level ZeRO == ZeRO-DP stage 1 and 2, we would denote it as ZeRO.
|
||||
## Examples of ZeRO and gradient accumulation
|
||||
|
||||
The code below only shows a typical gradient accumulation process, and it drops a lot of details, such as the processing of loss.
|
||||
|
||||
```python
|
||||
# examples of ZeRO1 with gradient accumulation
|
||||
...
|
||||
outputs = model(input)
|
||||
loss = SomeLoss(outputs)
|
||||
if (idx + 1) % ACCUMULATE_STEP != 0:
|
||||
with booster.no_sync(model, optimizer):
|
||||
# under this context, the gradient would not sync when backward,
|
||||
# left each rank having different gradient.
|
||||
# It saves the backward time
|
||||
booster.backward(loss, optimizer)
|
||||
continue
|
||||
else:
|
||||
# need to sync all the accumulated gradient
|
||||
booster.backward(loss, optimizer):
|
||||
optimizer.step()
|
||||
...
|
||||
```
|
||||
|
||||
```python
|
||||
# example of ZeRO2 with gradient accumulation
|
||||
|
||||
...
|
||||
outputs = model(input)
|
||||
loss = SomeLoss(outputs)
|
||||
# ZeRO2 split the gradients and can NOT accumulate gradient with syncing.
|
||||
booster.backward(loss, optimizer)
|
||||
if (idx + 1) % ACCUMULATE_STEP == 0:
|
||||
optimizer.step()
|
||||
...
|
||||
```
|
||||
|
||||
|
||||
## Design:
|
||||
### Notion
|
||||
@@ -25,11 +61,11 @@ The data structure looks like this:
|
||||
```
|
||||
After that, the gradients would be flattened by rank, and the data structure looks like this:
|
||||
```
|
||||
# g-0 means flatten([g-00, g-10])
|
||||
# g-X0 means flatten([g-00, g-10])
|
||||
{
|
||||
0: [g-0],
|
||||
1: [g-1],
|
||||
2: [g-2]
|
||||
0: [g-X0],
|
||||
1: [g-X1],
|
||||
2: [g-X2]
|
||||
}
|
||||
```
|
||||
For zero1, we iterate the dictionary and do `all_reduce`. For zero2, we can just do `reduce-scatter`.
|
||||
|
Reference in New Issue
Block a user