mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-09 04:50:17 +00:00
add moe context, moe utilities and refactor gradient handler (#455)
This commit is contained in:
@@ -1,5 +1,6 @@
|
||||
from .config import Config, ConfigException
|
||||
from .parallel_context import ParallelContext
|
||||
from .moe_context import MoeContext
|
||||
from .parallel_mode import ParallelMode
|
||||
from .process_group_initializer import *
|
||||
from .random import *
|
||||
|
151
colossalai/context/moe_context.py
Normal file
151
colossalai/context/moe_context.py
Normal file
@@ -0,0 +1,151 @@
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from .parallel_mode import ParallelMode
|
||||
|
||||
|
||||
def _check_sanity():
|
||||
from colossalai.core import global_context as gpc
|
||||
if gpc.tensor_parallel_size > 1 or gpc.pipeline_parallel_size > 1:
|
||||
raise NotImplementedError("Moe is not compatible with tensor or "
|
||||
"pipeline parallel at present.")
|
||||
|
||||
|
||||
class MoeInfo:
|
||||
"""Moe parallelism information, storing parallel sizes and groups.
|
||||
"""
|
||||
|
||||
def __init__(self, ep_size: int, dp_size: int):
|
||||
_check_sanity()
|
||||
self.ep_size = ep_size
|
||||
self.dp_size = dp_size
|
||||
self.ep_group = None
|
||||
# data parallel group for experts, since ep_group is different
|
||||
# we may have different dp_group from get_group(ParallelMode.DATA)
|
||||
self.dp_group = None
|
||||
|
||||
# Here we assume tensor parallel size = 1
|
||||
# Otherwise, MoE can't be used
|
||||
# Since TENSOR parallel group and DATA parallel group
|
||||
# have been created, we can use them directly.
|
||||
if ep_size == 1:
|
||||
from colossalai.core import global_context as gpc
|
||||
self.ep_group = gpc.get_group(ParallelMode.TENSOR)
|
||||
self.dp_group = gpc.get_group(ParallelMode.DATA)
|
||||
return
|
||||
|
||||
if dp_size == 1:
|
||||
from colossalai.core import global_context as gpc
|
||||
self.ep_group = gpc.get_group(ParallelMode.DATA)
|
||||
self.dp_group = gpc.get_group(ParallelMode.TENSOR)
|
||||
return
|
||||
|
||||
rank = dist.get_rank()
|
||||
# Create expert parallel group
|
||||
for i in range(dp_size):
|
||||
ranks = [i * ep_size + j for j in range(ep_size)]
|
||||
group = dist.new_group(ranks)
|
||||
if rank in ranks:
|
||||
self.ep_group = group
|
||||
|
||||
# Create data parallel group
|
||||
for j in range(ep_size):
|
||||
ranks = [i * ep_size + j for i in range(dp_size)]
|
||||
group = dist.new_group(ranks)
|
||||
if rank in ranks:
|
||||
self.dp_group = group
|
||||
|
||||
|
||||
class MoeContext:
|
||||
"""MoE parallel context manager. This class manages different
|
||||
parallel groups in MoE context and MoE loss in training.
|
||||
"""
|
||||
__instance = None
|
||||
|
||||
@staticmethod
|
||||
def get_instance():
|
||||
if MoeContext.__instance is None:
|
||||
MoeContext.__instance = MoeContext()
|
||||
return MoeContext.__instance
|
||||
|
||||
def __init__(self):
|
||||
self.world_size = 1
|
||||
# Users may want to set maximum expert parallel size smaller than the world size
|
||||
# since very low bandwidth across nodes may constrain the performance of MoE
|
||||
# When we have a maximum expert parallel size, we have a minimum data parallel size naturally
|
||||
self.max_ep_size = 1
|
||||
self.min_dp_size = 1
|
||||
self.aux_loss = None
|
||||
self.use_kernel_optim = True
|
||||
|
||||
self.has_setup = False
|
||||
self._info_dict = dict()
|
||||
|
||||
@property
|
||||
def information(self):
|
||||
return self._info_dict
|
||||
|
||||
@property
|
||||
def is_initialized(self):
|
||||
return self.has_setup
|
||||
|
||||
def setup(self, seed: int, use_kernel_optim: bool = True):
|
||||
|
||||
assert not self.is_initialized, "MoE distributed context shouldn't be set up again"
|
||||
_check_sanity()
|
||||
assert torch.cuda.is_available(), "MoE requires to enable CUDA first"
|
||||
|
||||
self.world_size = dist.get_world_size()
|
||||
|
||||
from colossalai.core import global_context as gpc
|
||||
self.max_ep_size = gpc.config.get('max_ep_size', self.world_size)
|
||||
assert self.world_size % self.max_ep_size == 0, \
|
||||
"Maximum epxert parallel size must be a factor of the number of GPUs"
|
||||
self.min_dp_size = self.world_size // self.max_ep_size
|
||||
|
||||
# Enabling kernel optimization may raise error in some cases
|
||||
# Users can close kernel optimization manually
|
||||
self.use_kernel_optim = use_kernel_optim
|
||||
|
||||
from .random import moe_set_seed
|
||||
moe_set_seed(seed)
|
||||
self.has_setup = True
|
||||
|
||||
def get_info(self, num_experts: int):
|
||||
"""Automatically deploys experts and returns parallel infomation about
|
||||
distributed communication groups.
|
||||
"""
|
||||
|
||||
gt_flag = num_experts % self.max_ep_size == 0 # check whether num_experts is greater
|
||||
lt_flag = self.max_ep_size % num_experts == 0 # check whether num_experts is less
|
||||
|
||||
assert gt_flag or lt_flag, "Automatic experts placement do not support such situation right now."
|
||||
|
||||
# If the number of experts is greater than maximum expert parallel size,
|
||||
# there are multiple experts in each GPU and each GPU has different experts
|
||||
# So it's data parallel size is 1
|
||||
# Otherwise, there is only one expert in each GPU
|
||||
# The data parallel size should be calculated
|
||||
dp_size = 1 if gt_flag else self.max_ep_size // num_experts
|
||||
ep_size = self.max_ep_size // dp_size
|
||||
|
||||
# Calculate the number of experts for each GPU
|
||||
num_local_experts = 1 if lt_flag else num_experts // self.max_ep_size
|
||||
|
||||
# Don't forget to multiply minimum data parallel size
|
||||
dp_size *= self.min_dp_size
|
||||
if not (ep_size in self.information):
|
||||
self.information[ep_size] = MoeInfo(ep_size, dp_size)
|
||||
|
||||
return num_local_experts, self.information[ep_size]
|
||||
|
||||
def set_kernel_not_use(self):
|
||||
self.use_kernel_optim = False
|
||||
|
||||
def reset_loss(self):
|
||||
self.aux_loss = 0
|
||||
|
||||
def add_loss(self, loss):
|
||||
self.aux_loss += loss
|
||||
|
||||
def get_loss(self):
|
||||
return self.aux_loss
|
@@ -9,7 +9,6 @@ import torch
|
||||
import torch.distributed as dist
|
||||
from colossalai.constants import ALLOWED_MODES, INITIALIZER_MAPPING
|
||||
from colossalai.context.config import Config
|
||||
from colossalai.global_variables import moe_env
|
||||
from colossalai.global_variables import tensor_parallel_env as env
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.registry import DIST_GROUP_INITIALIZER
|
||||
@@ -407,13 +406,6 @@ class ParallelContext:
|
||||
# add this config to initialize later
|
||||
pg_init.append(dict(type=INITIALIZER_MAPPING[tensor_parallel_mode.lower()], **tensor_parallel_cfg))
|
||||
|
||||
# initialization for moe environment
|
||||
if parallel_config is not None and 'moe' in parallel_config:
|
||||
param = parallel_config['moe']
|
||||
assert 'size' in param, "Moe model parallel size should be given"
|
||||
moe_env.setup(param['size'])
|
||||
pg_init.append(dict(type=INITIALIZER_MAPPING['moe']))
|
||||
|
||||
# run initialization of different process groups
|
||||
for initializer_cfg in pg_init:
|
||||
cfg = initializer_cfg.copy()
|
||||
|
@@ -147,15 +147,10 @@ def with_seed(func, parallel_mode: ParallelMode):
|
||||
def moe_set_seed(seed):
|
||||
if torch.cuda.is_available():
|
||||
from colossalai.core import global_context as gpc
|
||||
moe_mp_rank = gpc.get_local_rank(ParallelMode.MOE_MODEL)
|
||||
moe_mp_seed = seed + moe_mp_rank
|
||||
add_seed(ParallelMode.MOE_MODEL, moe_mp_seed)
|
||||
|
||||
global_rank = gpc.get_global_rank()
|
||||
add_seed(ParallelMode.TENSOR, global_rank, True)
|
||||
print(f"moe seed condition: {global_rank} with moe seed {moe_mp_seed}, ",
|
||||
f"tensor seed {global_rank}",
|
||||
flush=True)
|
||||
diff_seed = seed + global_rank
|
||||
add_seed(ParallelMode.TENSOR, diff_seed, True)
|
||||
print(f"moe seed condition: {global_rank} with tensor seed {diff_seed}", flush=True)
|
||||
|
||||
|
||||
def reset_seeds():
|
||||
|
Reference in New Issue
Block a user