[Inference]Support FP16/BF16 Flash Attention 2 And Add high_precision Flag To Rotary Embedding (#5461)

* Support FP16/BF16 Flash Attention 2

* fix bugs in test_kv_cache_memcpy.py

* add context_kv_cache_memcpy_kernel.cu

* rm typename MT

* add tail process

* add high_precision

* add high_precision to config.py

* rm unused code

* change the comment for the high_precision parameter

* update test_rotary_embdding_unpad.py

* fix vector_copy_utils.h

* add comment for self.high_precision when using float32
This commit is contained in:
yuehuayingxueluo
2024-03-25 13:40:34 +08:00
committed by GitHub
parent 7ff42cc06d
commit 87079cffe8
15 changed files with 550 additions and 138 deletions

View File

@@ -56,6 +56,23 @@
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
}
#define DISPATCH_FLOAT_HALF_AND_BFLOAT_WITH_HIGH_PRECISION(HIGH_PRECISION, \
TYPE, NAME, ...) \
switch (HIGH_PRECISION) { \
case false: { \
const bool high_precision = false; \
DISPATCH_FLOAT_HALF_AND_BFLOAT(TYPE, NAME, __VA_ARGS__); \
break; \
} \
case true: { \
const bool high_precision = true; \
DISPATCH_FLOAT_HALF_AND_BFLOAT(TYPE, NAME, __VA_ARGS__); \
break; \
} \
default: \
AT_ERROR("HIGH_PRECISION must be bool, but get ", HIGH_PRECISION, "."); \
}
#define DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(TYPEIN, TYPEOUT, NAME, ...) \
switch (TYPEIN) { \
case at::ScalarType::Float: { \

View File

@@ -27,5 +27,18 @@ struct MPTypeTrait<at::BFloat16> {
using Type = float;
};
template <bool high_precision, typename scalar_t>
struct ScalarTypeTrait;
template <typename T>
struct ScalarTypeTrait<true, T> {
using Type = typename MPTypeTrait<T>::Type;
};
template <typename T>
struct ScalarTypeTrait<false, T> {
using Type = T;
};
} // namespace common
} // namespace colossalAI

View File

@@ -0,0 +1,195 @@
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include "utils/vector_copy_utils.h"
#include "../common/micros.h"
template<typename scalar_t, int VecSize>
__global__ void context_kv_cache_memcpy_kernel(
const scalar_t* __restrict__ key,
const scalar_t* __restrict__ value,
scalar_t* __restrict__ key_cache,
scalar_t* __restrict__ value_cache,
const int* __restrict__ sequence_lengths,
const int* __restrict__ cu_seqlens,
const int* __restrict__ block_tables,
const int head_num,
const int head_dim,
const int block_size,
const int batch_size,
const int block_table_stride,
const int64_t key_stride,
const int64_t value_stride
)
{
const int seq_token_id = blockIdx.x;
const int seq_id = blockIdx.y;
const int block_id = block_tables[seq_id * block_table_stride + seq_token_id / block_size];
if ( block_id < 0 || seq_token_id > sequence_lengths[seq_id] - 1) {
return ;
}
const int block_offset = seq_token_id % block_size;
const int hidden_size = head_num * head_dim;
const int total_token_id = cu_seqlens[seq_id] + seq_token_id;
int head_id;
int head_offset;
int64_t key_src_id;
int64_t value_src_id;
int64_t target_id;
int i = threadIdx.x * VecSize;
for (; i <= (hidden_size - VecSize); i += blockDim.x * VecSize) {
head_id = i / head_dim;
head_offset = i % head_dim;
key_src_id = total_token_id * key_stride + i;
value_src_id = total_token_id * value_stride + i;
target_id = block_id * hidden_size * block_size
+ head_id * block_size * head_dim
+ block_offset * head_dim + head_offset;
copy_vector<scalar_t, VecSize>(key_cache + target_id, key + key_src_id);
copy_vector<scalar_t, VecSize>(value_cache + target_id, value + value_src_id);
}
// tail process
for (; i < hidden_size; ++i ) {
head_id = i / head_dim;
head_offset = i % head_dim;
key_src_id = total_token_id * key_stride + i;
value_src_id = total_token_id * value_stride + i;
target_id = block_id * hidden_size * block_size
+ head_id * block_size * head_dim
+ block_offset * head_dim + head_offset;
key_cache[target_id] = key[key_src_id];
value_cache[target_id] = value[value_src_id];
}
}
template<typename scalar_t>
void apply_context_kv_cache_memcpy(
at::Tensor& key, // [num_tokens, head_num, head_dim]
at::Tensor& value, // [num_tokens, head_num, head_dim]
at::Tensor& key_cache, // [num_blocks, head_num, block_size, head_dim]
at::Tensor& value_cache, // [num_blocks, head_num, block_size, head_dim]
at::Tensor& sequence_lengths, // [batch_size]
at::Tensor& cu_seqlens, // [batch_size + 1]
at::Tensor& block_tables, // [batch_size, max_seq_len]
int max_seq_len_in_batch)
{
int num_tokens = key.size(0);
int head_num = key.size(1);
int head_dim = key.size(2);
int block_size = key_cache.size(2);
int batch_size = block_tables.size(0);
int64_t key_stride = key.stride(0);
int64_t value_stride = value.stride(0);
int block_table_stride = block_tables.stride(0);
int vec_size = get_vec_size<scalar_t>(key);
if (head_dim % vec_size != 0) {
// Disable vectorized loading optimization when head_dim is not divisible by VecSize.
vec_size = 1;
}
int thread_nums = head_num * head_dim / vec_size;
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
dim3 grid(max_seq_len_in_batch, batch_size);
dim3 block(std::min(thread_nums, 512));
switch (vec_size) {
case 1:
context_kv_cache_memcpy_kernel<scalar_t, 1><<<grid, block, 0, stream>>>(
key.data_ptr<scalar_t>(),
value.data_ptr<scalar_t>(),
key_cache.data_ptr<scalar_t>(),
value_cache.data_ptr<scalar_t>(),
sequence_lengths.data_ptr<int>(),
cu_seqlens.data_ptr<int>(),
block_tables.data_ptr<int>(),
head_num,
head_dim,
block_size,
batch_size,
block_table_stride,
key_stride,
value_stride
);
break;
case 2:
context_kv_cache_memcpy_kernel<scalar_t, 2><<<grid, block, 0, stream>>>(
key.data_ptr<scalar_t>(),
value.data_ptr<scalar_t>(),
key_cache.data_ptr<scalar_t>(),
value_cache.data_ptr<scalar_t>(),
sequence_lengths.data_ptr<int>(),
cu_seqlens.data_ptr<int>(),
block_tables.data_ptr<int>(),
head_num,
head_dim,
block_size,
batch_size,
block_table_stride,
key_stride,
value_stride
);
break;
case 4:
context_kv_cache_memcpy_kernel<scalar_t, 4><<<grid, block, 0, stream>>>(
key.data_ptr<scalar_t>(),
value.data_ptr<scalar_t>(),
key_cache.data_ptr<scalar_t>(),
value_cache.data_ptr<scalar_t>(),
sequence_lengths.data_ptr<int>(),
cu_seqlens.data_ptr<int>(),
block_tables.data_ptr<int>(),
head_num,
head_dim,
block_size,
batch_size,
block_table_stride,
key_stride,
value_stride
);
break;
default:
AT_ERROR("Unsupported vectorized size ", vec_size);
break;
}
AT_CUDA_CHECK(cudaGetLastError());
}
void context_kv_cache_memcpy(
at::Tensor& key, // [num_tokens, head_num, head_dim]
at::Tensor& value, // [num_tokens, head_num, head_dim]
at::Tensor& key_cache, // [num_blocks, head_num, block_size, head_dim]
at::Tensor& value_cache, // [num_blocks, head_num, block_size, head_dim]
at::Tensor& sequence_lengths, // [batch_size]
at::Tensor& cu_seqlens, // [batch_size + 1]
at::Tensor& block_tables, // [batch_size, max_seq_len]
int max_seq_len_in_batch)
{
DISPATCH_FLOAT_HALF_AND_BFLOAT(
key.scalar_type(),
"context_kv_cache_memcpy",
apply_context_kv_cache_memcpy<scalar_t>(
key,
value,
key_cache,
value_cache,
sequence_lengths,
cu_seqlens,
block_tables,
max_seq_len_in_batch
);)
}

View File

@@ -30,7 +30,9 @@ __global__ void decode_kv_cache_memcpy_kernel(
return ;
}
for (int i = threadIdx.x * VecSize; i < hidden_size; i += blockDim.x * VecSize) {
int i = threadIdx.x * VecSize;
for (; i <= (hidden_size - VecSize); i += blockDim.x * VecSize) {
const int head_id = i / head_dim;
const int head_offset = i % head_dim;
const int64_t key_src_id = seq_id * key_stride + i;
@@ -43,6 +45,19 @@ __global__ void decode_kv_cache_memcpy_kernel(
copy_vector<scalar_t, VecSize>(value_cache + target_id, value + value_src_id);
}
for (; i < hidden_size; ++i ) {
const int head_id = i / head_dim;
const int head_offset = i % head_dim;
const int64_t key_src_id = seq_id * key_stride + i;
const int64_t value_src_id = seq_id * value_stride + i;
const int64_t target_id = block_id * hidden_size * block_size
+ head_id * block_size * head_dim
+ block_offset * head_dim + head_offset;
key_cache[target_id] = key[key_src_id];
value_cache[target_id] = value[value_src_id];
}
}
template<typename scalar_t>

View File

@@ -1,14 +1,15 @@
// in transformers source code, huggingface uses fp16 to compute rope so we follow the same precision
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include "utils/vector_copy_utils.h"
#include "../common/micros.h"
#include "../common/mp_type_traits.h"
template <typename scalar_t, int VecSize>
template <typename scalar_t, typename m_scalar_t, int VecSize>
__device__ void apply_emb_rotary_compute(
scalar_t* __restrict__ src, const scalar_t* __restrict__ cos_ptr,
const scalar_t* __restrict__ sin_ptr, const int64_t stride,
scalar_t* __restrict__ src, const m_scalar_t* __restrict__ cos_ptr,
const m_scalar_t* __restrict__ sin_ptr, const int64_t stride,
const int token_id, const int shard_block_size, const int half_head_dim,
const int head_num, const int head_dim) {
scalar_t x[VecSize];
@@ -30,10 +31,10 @@ __device__ void apply_emb_rotary_compute(
#pragma unroll
for (int j = 0; j < VecSize; j++) {
out_x[j] = x[j] * cos_ptr[j * 32 + shard_offset] -
y[j] * sin_ptr[j * 32 + shard_offset];
out_y[j] = y[j] * cos_ptr[j * 32 + shard_offset] +
x[j] * sin_ptr[j * 32 + shard_offset];
out_x[j] = static_cast<scalar_t>(static_cast<m_scalar_t>(x[j]) * cos_ptr[j * 32 + shard_offset] -
static_cast<m_scalar_t>(y[j]) * sin_ptr[j * 32 + shard_offset]);
out_y[j] = static_cast<scalar_t>(static_cast<m_scalar_t>(y[j]) * cos_ptr[j * 32 + shard_offset] +
static_cast<m_scalar_t>(x[j]) * sin_ptr[j * 32 + shard_offset]);
}
copy_vector<scalar_t, VecSize>(src + addr_offset, out_x);
@@ -62,10 +63,10 @@ __device__ void apply_kv_memcopy(
}
}
template <typename scalar_t, int VecSize>
template <typename scalar_t, typename m_scalar_t, int VecSize>
__device__ void cos_sin_memory_access(
const scalar_t* __restrict__ cos, const scalar_t* __restrict__ sin,
scalar_t* cos_ptr, scalar_t* sin_ptr, const int token_id,
m_scalar_t* cos_ptr, m_scalar_t* sin_ptr, const int token_id,
const int shard_block_size, const int cos_stride, const int sin_stride,
const int half_head_dim) {
for (int i = threadIdx.x; i < half_head_dim; i += blockDim.x) {
@@ -73,16 +74,16 @@ __device__ void cos_sin_memory_access(
const int shard_offset = (i % shard_block_size) / VecSize;
const int shard_head =
(i / shard_block_size) * shard_block_size + i % VecSize * 32;
cos_ptr[shard_head + shard_offset] = cos[token_id * cos_stride + i];
sin_ptr[shard_head + shard_offset] = sin[token_id * sin_stride + i];
cos_ptr[shard_head + shard_offset] = static_cast<m_scalar_t>(cos[token_id * cos_stride + i]);
sin_ptr[shard_head + shard_offset] = static_cast<m_scalar_t>(sin[token_id * sin_stride + i]);
}
}
template <typename scalar_t, int VecSize>
template <typename scalar_t, typename m_scalar_t, int VecSize>
__device__ void apply_k_rotary_emb_compute(
scalar_t* __restrict__ key, scalar_t* __restrict__ value,
scalar_t* __restrict__ key_cache, scalar_t* __restrict__ value_cache,
const scalar_t* __restrict__ cos_ptr, const scalar_t* __restrict__ sin_ptr,
const m_scalar_t* __restrict__ cos_ptr, const m_scalar_t* __restrict__ sin_ptr,
const int* __restrict__ sequence_lengths,
const int* __restrict__ block_tables, const int64_t key_stride,
const int64_t value_stride, const int token_id,
@@ -120,10 +121,10 @@ __device__ void apply_k_rotary_emb_compute(
#pragma unroll
for (int j = 0; j < VecSize; j++) {
out_x[j] = x[j] * cos_ptr[j * 32 + shard_offset] -
y[j] * sin_ptr[j * 32 + shard_offset];
out_y[j] = y[j] * cos_ptr[j * 32 + shard_offset] +
x[j] * sin_ptr[j * 32 + shard_offset];
out_x[j] = static_cast<scalar_t>(static_cast<m_scalar_t>(x[j]) * cos_ptr[j * 32 + shard_offset] -
static_cast<m_scalar_t>(y[j]) * sin_ptr[j * 32 + shard_offset]);
out_y[j] = static_cast<scalar_t>(static_cast<m_scalar_t>(y[j]) * cos_ptr[j * 32 + shard_offset] +
static_cast<m_scalar_t>(x[j]) * sin_ptr[j * 32 + shard_offset]);
}
copy_vector<scalar_t, VecSize>(key_cache + target_id, out_x);
@@ -137,7 +138,7 @@ __device__ void apply_k_rotary_emb_compute(
block_size, block_offset, head_dim, half_head_dim);
}
template<typename scalar_t, int VecSize>
template<typename scalar_t, typename m_scalar_t, int VecSize>
__global__ void rotary_embedding_and_cache_copy_kernel(
scalar_t* __restrict__ query,
scalar_t* __restrict__ key,
@@ -167,21 +168,21 @@ __global__ void rotary_embedding_and_cache_copy_kernel(
extern __shared__ char shard_ptr[];
scalar_t *cos_ptr = (scalar_t*)shard_ptr;
scalar_t *sin_ptr = cos_ptr + half_shard_element_num;
m_scalar_t *cos_ptr = (m_scalar_t*)shard_ptr;
m_scalar_t *sin_ptr = cos_ptr + half_shard_element_num;
// apply cos_sin memcopy
cos_sin_memory_access<scalar_t, VecSize>(cos, sin, cos_ptr, sin_ptr, token_id, shard_block_size, cos_stride, sin_stride, half_head_dim);
cos_sin_memory_access<scalar_t, m_scalar_t, VecSize>(cos, sin, cos_ptr, sin_ptr, token_id, shard_block_size, cos_stride, sin_stride, half_head_dim);
__syncthreads();
//compute query
apply_emb_rotary_compute<scalar_t, VecSize>(query, cos_ptr, sin_ptr, query_stride, token_id, shard_block_size, half_head_dim, head_num, head_dim);
apply_emb_rotary_compute<scalar_t, m_scalar_t, VecSize>(query, cos_ptr, sin_ptr, query_stride, token_id, shard_block_size, half_head_dim, head_num, head_dim);
//compute key and copy kv
apply_k_rotary_emb_compute<scalar_t, VecSize>(key, value, key_cache, value_cache, cos_ptr, sin_ptr, sequence_lengths, block_tables, key_stride, value_stride, token_id, block_table_stride, head_num, head_dim, kv_head_num, block_size, half_head_dim, shard_block_size);
apply_k_rotary_emb_compute<scalar_t, m_scalar_t, VecSize>(key, value, key_cache, value_cache, cos_ptr, sin_ptr, sequence_lengths, block_tables, key_stride, value_stride, token_id, block_table_stride, head_num, head_dim, kv_head_num, block_size, half_head_dim, shard_block_size);
}
template<typename scalar_t, int VecSize>
template<typename scalar_t, typename m_scalar_t, int VecSize>
__global__ void rotary_embedding_kernel(
scalar_t* __restrict__ query,
scalar_t* __restrict__ key,
@@ -202,21 +203,21 @@ __global__ void rotary_embedding_kernel(
extern __shared__ char shard_ptr[];
scalar_t *cos_ptr = (scalar_t*)shard_ptr;
scalar_t *sin_ptr = cos_ptr + half_shard_element_num;
m_scalar_t *cos_ptr = (m_scalar_t*)shard_ptr;
m_scalar_t *sin_ptr = cos_ptr + half_shard_element_num;
// apply cos_sin memcopy
cos_sin_memory_access<scalar_t, VecSize>(cos, sin, cos_ptr, sin_ptr, token_id, shard_block_size, cos_stride, sin_stride, half_head_dim);
cos_sin_memory_access<scalar_t, m_scalar_t, VecSize>(cos, sin, cos_ptr, sin_ptr, token_id, shard_block_size, cos_stride, sin_stride, half_head_dim);
__syncthreads();
//compute query
apply_emb_rotary_compute<scalar_t, VecSize>(query, cos_ptr, sin_ptr, query_stride, token_id, shard_block_size, half_head_dim, head_num, head_dim);
apply_emb_rotary_compute<scalar_t, m_scalar_t, VecSize>(query, cos_ptr, sin_ptr, query_stride, token_id, shard_block_size, half_head_dim, head_num, head_dim);
//compute key
apply_emb_rotary_compute<scalar_t, VecSize>(key, cos_ptr, sin_ptr, key_stride, token_id, shard_block_size, half_head_dim, kv_head_num, head_dim);
apply_emb_rotary_compute<scalar_t, m_scalar_t, VecSize>(key, cos_ptr, sin_ptr, key_stride, token_id, shard_block_size, half_head_dim, kv_head_num, head_dim);
}
template<typename scalar_t>
template<typename scalar_t, bool high_precision>
void apply_rotary_embedding_and_cache_copy(
at::Tensor& query, // [num_tokens, head_num, head_dim]
at::Tensor& key, // [num_tokens, kv_head_num, head_dim]
@@ -241,6 +242,8 @@ void apply_rotary_embedding_and_cache_copy(
int sin_stride = sin.stride(0);
int block_table_stride = block_tables.stride(0);
using m_scalar_t = typename colossalAI::common::ScalarTypeTrait<high_precision, scalar_t>::Type;
int vec_size = get_vec_size<scalar_t>(query);
if ((head_dim / 2) % vec_size != 0) {
@@ -259,7 +262,7 @@ void apply_rotary_embedding_and_cache_copy(
switch (vec_size) {
case 1:
rotary_embedding_and_cache_copy_kernel<scalar_t, 1><<<grid, block, shard_element_num * sizeof(scalar_t), stream>>>(
rotary_embedding_and_cache_copy_kernel<scalar_t, m_scalar_t, 1><<<grid, block, shard_element_num * sizeof(m_scalar_t), stream>>>(
query.data_ptr<scalar_t>(),
key.data_ptr<scalar_t>(),
value.data_ptr<scalar_t>(),
@@ -283,7 +286,7 @@ void apply_rotary_embedding_and_cache_copy(
);
break;
case 2:
rotary_embedding_and_cache_copy_kernel<scalar_t, 2><<<grid, block, shard_element_num * sizeof(scalar_t), stream>>>(
rotary_embedding_and_cache_copy_kernel<scalar_t, m_scalar_t, 2><<<grid, block, shard_element_num * sizeof(m_scalar_t), stream>>>(
query.data_ptr<scalar_t>(),
key.data_ptr<scalar_t>(),
value.data_ptr<scalar_t>(),
@@ -307,7 +310,7 @@ void apply_rotary_embedding_and_cache_copy(
);
break;
case 4:
rotary_embedding_and_cache_copy_kernel<scalar_t, 4><<<grid, block, shard_element_num * sizeof(scalar_t), stream>>>(
rotary_embedding_and_cache_copy_kernel<scalar_t, m_scalar_t, 4><<<grid, block, shard_element_num * sizeof(m_scalar_t), stream>>>(
query.data_ptr<scalar_t>(),
key.data_ptr<scalar_t>(),
value.data_ptr<scalar_t>(),
@@ -338,12 +341,12 @@ void apply_rotary_embedding_and_cache_copy(
AT_CUDA_CHECK(cudaGetLastError());
}
template<typename scalar_t>
template<typename scalar_t, bool high_precision>
void apply_rotary_embedding(
at::Tensor& query, // [total_tokens, head_num, head_dim]
at::Tensor& key, // [total_tokens, kv_head_num, head_dim]
at::Tensor& cos, // [total_tokens, head_dim]
at::Tensor& sin // [total_tokens, head_dim]
at::Tensor& sin // [total_tokens, head_dim]
){
int num_tokens = query.size(0);
int head_num = query.size(1);
@@ -355,6 +358,8 @@ void apply_rotary_embedding(
int cos_stride = cos.stride(0);
int sin_stride = sin.stride(0);
using m_scalar_t = typename colossalAI::common::ScalarTypeTrait<high_precision, scalar_t>::Type;
int vec_size = get_vec_size<scalar_t>(query);
if ((head_dim / 2) % vec_size != 0) {
@@ -373,7 +378,7 @@ void apply_rotary_embedding(
switch (vec_size) {
case 1:
rotary_embedding_kernel<scalar_t, 1><<<grid, block, shard_element_num * sizeof(scalar_t), stream>>>(
rotary_embedding_kernel<scalar_t, m_scalar_t, 1><<<grid, block, shard_element_num * sizeof(m_scalar_t), stream>>>(
query.data_ptr<scalar_t>(),
key.data_ptr<scalar_t>(),
cos.data_ptr<scalar_t>(),
@@ -389,7 +394,7 @@ void apply_rotary_embedding(
);
break;
case 2:
rotary_embedding_kernel<scalar_t, 2><<<grid, block, shard_element_num * sizeof(scalar_t), stream>>>(
rotary_embedding_kernel<scalar_t, m_scalar_t, 2><<<grid, block, shard_element_num * sizeof(m_scalar_t), stream>>>(
query.data_ptr<scalar_t>(),
key.data_ptr<scalar_t>(),
cos.data_ptr<scalar_t>(),
@@ -405,7 +410,7 @@ void apply_rotary_embedding(
);
break;
case 4:
rotary_embedding_kernel<scalar_t, 4><<<grid, block, shard_element_num * sizeof(scalar_t), stream>>>(
rotary_embedding_kernel<scalar_t, m_scalar_t, 4><<<grid, block, shard_element_num * sizeof(m_scalar_t), stream>>>(
query.data_ptr<scalar_t>(),
key.data_ptr<scalar_t>(),
cos.data_ptr<scalar_t>(),
@@ -436,12 +441,14 @@ void rotary_embedding_and_cache_copy(
at::Tensor& key_cache, // [num_blocks, head_num, block_size, head_dim]
at::Tensor& value_cache, // [num_blocks, head_num, block_size, head_dim]
at::Tensor& sequence_lengths, // [batch_size]
at::Tensor& block_tables) // [batch_size, max_seq_len]
at::Tensor& block_tables, // [batch_size, max_seq_len]
bool high_precision)
{
DISPATCH_FLOAT_HALF_AND_BFLOAT(
DISPATCH_FLOAT_HALF_AND_BFLOAT_WITH_HIGH_PRECISION(
high_precision,
query.scalar_type(),
"rotary_embedding_and_cache_copy",
apply_rotary_embedding_and_cache_copy<scalar_t>(
apply_rotary_embedding_and_cache_copy<scalar_t, high_precision>(
query,
key,
value,
@@ -458,12 +465,14 @@ void rotary_embedding(
at::Tensor& query, // [total_tokens, head_num, head_dim]
at::Tensor& key, // [total_tokens, kv_head_num, head_dim]
at::Tensor& cos, // [total_tokens, head_dim]
at::Tensor& sin // [total_tokens, head_dim]
at::Tensor& sin, // [total_tokens, head_dim]
bool high_precision
){
DISPATCH_FLOAT_HALF_AND_BFLOAT(
DISPATCH_FLOAT_HALF_AND_BFLOAT_WITH_HIGH_PRECISION(
high_precision,
query.scalar_type(),
"rotary_embedding",
apply_rotary_embedding<scalar_t>(
apply_rotary_embedding<scalar_t, high_precision>(
query,
key,
cos,

View File

@@ -9,11 +9,22 @@ void decode_kv_cache_memcpy(
torch::Tensor& sequence_lengths, // [batch_size]
torch::Tensor& block_tables); // [batch_size, max_seq_len]
void context_kv_cache_memcpy(
at::Tensor& key, // [num_tokens, head_num, head_dim]
at::Tensor& value, // [num_tokens, head_num, head_dim]
at::Tensor& key_cache, // [num_blocks, head_num, block_size, head_dim]
at::Tensor& value_cache, // [num_blocks, head_num, block_size, head_dim]
at::Tensor& sequence_lengths, // [batch_size]
at::Tensor& cu_seqlens, // [batch_size + 1]
at::Tensor& block_tables, // [batch_size, max_seq_len]
int max_seq_len_in_batch);
void rotary_embedding(
torch::Tensor& query, // [total_tokens, head_num, head_dim]
torch::Tensor& key, // [total_tokens, kv_head_num, head_dim]
torch::Tensor& cos, // [total_tokens, head_dim]
torch::Tensor& sin); // [total_tokens, head_dim]
torch::Tensor& sin, // [total_tokens, head_dim]
bool high_precision);
void rotary_embedding_and_cache_copy(
torch::Tensor& query, // [num_tokens, head_num, head_dim]
@@ -25,7 +36,9 @@ void rotary_embedding_and_cache_copy(
torch::Tensor&
value_cache, // [num_blocks, num_heads, block_size, head_dim]
torch::Tensor& sequence_lengths, // [batch_size]
torch::Tensor& block_tables); // [batch_size, max_seq_len]
torch::Tensor& block_tables, // [batch_size, max_seq_len]
bool high_precision);
torch::Tensor silu_and_mul(const torch::Tensor& ins);
void rms_layernorm(torch::Tensor& out, // [..., hidden_size]
@@ -42,6 +55,9 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("decode_kv_cache_memcpy", &decode_kv_cache_memcpy,
"Copy the GPU memory of kvcache during the decode stage.");
m.def("context_kv_cache_memcpy", &context_kv_cache_memcpy,
"Copy the GPU memory of kvcache during the context stage.");
m.def(
"rotary_embedding_and_cache_copy", &rotary_embedding_and_cache_copy,
"performing Rotary Embedding-related calculations and KVCache Memcopy.");

View File

@@ -11,6 +11,8 @@
#include <cfloat>
#include <limits>
#include "utils/vector_copy_utils.h"
namespace {
int log2_ceil(int value) {

View File

@@ -11,16 +11,16 @@ template <typename T, int VecSize>
__device__ __inline__ void copy_vector(T *dst, const T *src) {
using VT = typename colossalAI::cuda::utils::VecTypeTrait<T, VecSize>::Type;
// Note(LiuYang): Here static_cast can't be used for cast between two pointer
*(reinterpret_cast<VT *>(dst)) = *(reinterpret_cast<VT *>(src));
*(reinterpret_cast<VT *>(dst)) = *(reinterpret_cast<const VT *>(src));
}
template <>
__device__ __inline__ void copy_vector<float, 8>(float *dst, const float *src) {
// Since the maximum memory alignment length is 128 bits, we choose float4
// here.
*(reinterpret_cast<float4 *>(dst)) = *(reinterpret_cast<float4 *>(src));
*(reinterpret_cast<float4 *>(dst)) = *(reinterpret_cast<const float4 *>(src));
*(reinterpret_cast<float4 *>(dst + 4)) =
*(reinterpret_cast<float4 *>(src + 4));
*(reinterpret_cast<const float4 *>(src + 4));
}
template <typename T, int VecSize>

View File

@@ -12,6 +12,7 @@ class InferenceOpsCudaExtension(_CudaExtension):
for fname in [
"cuda/pybind/inference.cpp",
"cuda/decode_kv_cache_memcpy_kernel.cu",
"cuda/context_kv_cache_memcpy_kernel.cu",
"cuda/fused_rotary_emb_and_cache_kernel.cu",
"cuda/activation_kernel.cu",
"cuda/rms_layernorm_kernel.cu",