mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-16 14:41:53 +00:00
[Fix] Fix & Update Inference Tests (compatibility w/ main)
This commit is contained in:
0
tests/test_infer/test_kernels/cuda/__init__.py
Normal file
0
tests/test_infer/test_kernels/cuda/__init__.py
Normal file
@@ -0,0 +1,320 @@
|
||||
from itertools import product
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from colossalai.inference.modeling.models.nopadding_baichuan import get_alibi_slopes
|
||||
from colossalai.kernel.kernel_loader import InferenceOpsLoader
|
||||
from colossalai.utils import get_current_device
|
||||
from tests.test_infer.test_kernels.triton.test_context_attn_unpad import generate_alibi_mask
|
||||
|
||||
inference_ops = InferenceOpsLoader().load()
|
||||
|
||||
from tests.test_infer.test_kernels.triton.kernel_utils import (
|
||||
convert_kv_unpad_to_padded,
|
||||
create_attention_mask,
|
||||
generate_caches_and_block_tables_v3,
|
||||
generate_caches_and_block_tables_vllm,
|
||||
torch_attn_ref,
|
||||
)
|
||||
|
||||
q_len = 1
|
||||
|
||||
|
||||
def prepare_data(
|
||||
BATCH_SIZE: int,
|
||||
HEAD_SIZE: int,
|
||||
NUM_ATTN_HEADS: int,
|
||||
NUM_KV_HEADS: int,
|
||||
MAX_SEQ_LEN: int,
|
||||
dtype=torch.float16,
|
||||
device="cuda",
|
||||
):
|
||||
# Use the provided maximum sequence length for each sequence when testing with teh same context length,
|
||||
# otherwise generate random context lengths.
|
||||
# returns
|
||||
# q [BATCH_SIZE, NUM_ATTN_HEADS, HEAD_SIZE]
|
||||
# k_unpad/v_unpad [num_tokens, NUM_KV_HEADS, HEAD_SIZE]
|
||||
kv_lengths = torch.randint(low=1, high=MAX_SEQ_LEN, size=(BATCH_SIZE,), dtype=torch.int32, device=device)
|
||||
num_tokens = torch.sum(kv_lengths).item()
|
||||
|
||||
q_size = (BATCH_SIZE, q_len, NUM_ATTN_HEADS, HEAD_SIZE)
|
||||
q = torch.empty(size=q_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5).transpose(1, 2)
|
||||
kv_size = (num_tokens, 2 * NUM_KV_HEADS, HEAD_SIZE)
|
||||
kv_unpad = torch.empty(size=kv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
|
||||
k_unpad, v_unpad = torch.split(kv_unpad, [NUM_KV_HEADS, NUM_KV_HEADS], dim=-2)
|
||||
|
||||
return q, k_unpad, v_unpad, kv_lengths
|
||||
|
||||
|
||||
def numpy_allclose(x, y, rtol, atol):
|
||||
x_numpy = x.detach().cpu().numpy()
|
||||
y_numpy = y.detach().cpu().numpy()
|
||||
|
||||
np.testing.assert_allclose(x_numpy, y_numpy, rtol=rtol, atol=atol)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("BATCH_SIZE", [1, 4, 7, 32])
|
||||
@pytest.mark.parametrize("BLOCK_SIZE", [8, 16, 32])
|
||||
@pytest.mark.parametrize("MAX_NUM_BLOCKS_PER_SEQ", [1, 8, 32])
|
||||
@pytest.mark.parametrize("HEAD_SIZE", [64, 128])
|
||||
@pytest.mark.parametrize("NUM_ATTN_HEADS", [16])
|
||||
@pytest.mark.parametrize("KV_GROUP_NUM", [1, 2, 16])
|
||||
@pytest.mark.parametrize("dtype", [torch.float16, torch.float32])
|
||||
@pytest.mark.parametrize("use_alibi_slopes", [True, False])
|
||||
def test_flash_decoding_attention(
|
||||
BATCH_SIZE, BLOCK_SIZE, MAX_NUM_BLOCKS_PER_SEQ, HEAD_SIZE, NUM_ATTN_HEADS, KV_GROUP_NUM, dtype, use_alibi_slopes
|
||||
):
|
||||
torch.manual_seed(123)
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.synchronize()
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
|
||||
NUM_KV_HEADS = NUM_ATTN_HEADS // KV_GROUP_NUM
|
||||
assert isinstance(NUM_KV_HEADS, int) and NUM_KV_HEADS > 0, "Invalid number of kv heads."
|
||||
MAX_SEQ_LEN = BLOCK_SIZE * MAX_NUM_BLOCKS_PER_SEQ
|
||||
device = get_current_device()
|
||||
|
||||
if use_alibi_slopes:
|
||||
alibi_slopes = get_alibi_slopes(NUM_ATTN_HEADS, device)
|
||||
else:
|
||||
alibi_slopes = None
|
||||
|
||||
q, k_unpad, v_unpad, kv_seq_lengths = prepare_data(
|
||||
BATCH_SIZE, HEAD_SIZE, NUM_ATTN_HEADS, NUM_KV_HEADS, MAX_SEQ_LEN, dtype, device
|
||||
)
|
||||
|
||||
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v3(
|
||||
k_unpad, v_unpad, kv_seq_lengths, BATCH_SIZE, MAX_NUM_BLOCKS_PER_SEQ, BLOCK_SIZE, dtype, device
|
||||
)
|
||||
|
||||
block_tables = block_tables.to(device=device)
|
||||
max_seq_len_across_batch = kv_seq_lengths.max().item()
|
||||
kv_max_split_num = (max_seq_len_across_batch + BLOCK_SIZE - 1) // BLOCK_SIZE
|
||||
output = torch.empty((BATCH_SIZE, NUM_ATTN_HEADS, HEAD_SIZE), dtype=dtype, device=device)
|
||||
sm_scale = 1.0 / (HEAD_SIZE**0.5)
|
||||
|
||||
k_torch = convert_kv_unpad_to_padded(k_unpad, kv_seq_lengths, BATCH_SIZE, max_seq_len_across_batch)
|
||||
v_torch = convert_kv_unpad_to_padded(v_unpad, kv_seq_lengths, BATCH_SIZE, max_seq_len_across_batch)
|
||||
torch_padding_mask = create_attention_mask(kv_seq_lengths, BATCH_SIZE, q_len, max_seq_len_across_batch, device)
|
||||
|
||||
if use_alibi_slopes:
|
||||
alibi_mask = generate_alibi_mask(alibi_slopes, NUM_ATTN_HEADS, max_seq_len_across_batch, device)
|
||||
torch_padding_mask = torch_padding_mask + alibi_mask
|
||||
|
||||
if len(torch_padding_mask.size()) == 4:
|
||||
torch_padding_mask = torch_padding_mask[:, :, -1:, :]
|
||||
else:
|
||||
torch_padding_mask = torch_padding_mask[:, -1:, :]
|
||||
|
||||
mid_output = torch.empty(
|
||||
size=(BATCH_SIZE, NUM_ATTN_HEADS, kv_max_split_num, HEAD_SIZE), dtype=torch.float32, device=device
|
||||
)
|
||||
mid_output_lse = torch.empty(
|
||||
size=(BATCH_SIZE, NUM_ATTN_HEADS, kv_max_split_num), dtype=torch.float32, device=device
|
||||
)
|
||||
|
||||
if dtype == torch.float16:
|
||||
rtol = 1e-3
|
||||
atol = 1e-3
|
||||
|
||||
high_precision_q = q.to(torch.float32)
|
||||
high_precision_k_torch = k_torch.to(torch.float32)
|
||||
high_precision_v_torch = v_torch.to(torch.float32)
|
||||
out_ref = torch_attn_ref(
|
||||
high_precision_q,
|
||||
high_precision_k_torch,
|
||||
high_precision_v_torch,
|
||||
torch_padding_mask,
|
||||
BATCH_SIZE,
|
||||
q_len,
|
||||
max_seq_len_across_batch,
|
||||
NUM_ATTN_HEADS,
|
||||
NUM_KV_HEADS,
|
||||
HEAD_SIZE,
|
||||
).to(torch.float16)
|
||||
|
||||
else:
|
||||
rtol = 1e-5
|
||||
atol = 1e-7
|
||||
|
||||
out_ref = torch_attn_ref(
|
||||
q,
|
||||
k_torch,
|
||||
v_torch,
|
||||
torch_padding_mask,
|
||||
BATCH_SIZE,
|
||||
q_len,
|
||||
max_seq_len_across_batch,
|
||||
NUM_ATTN_HEADS,
|
||||
NUM_KV_HEADS,
|
||||
HEAD_SIZE,
|
||||
)
|
||||
|
||||
inference_ops.flash_decoding_attention(
|
||||
output,
|
||||
q.squeeze(2),
|
||||
k_cache,
|
||||
v_cache,
|
||||
kv_seq_lengths,
|
||||
block_tables,
|
||||
BLOCK_SIZE,
|
||||
max_seq_len_across_batch,
|
||||
mid_output,
|
||||
mid_output_lse,
|
||||
alibi_slopes,
|
||||
sm_scale,
|
||||
)
|
||||
|
||||
# The alibi may introduce relatively large errors
|
||||
if use_alibi_slopes:
|
||||
rtol = 1e0
|
||||
|
||||
numpy_allclose(out_ref, output, rtol=rtol, atol=atol)
|
||||
|
||||
|
||||
try:
|
||||
from vllm._C import ops as vllm_ops # noqa
|
||||
|
||||
HAS_VLLM = True
|
||||
except ImportError:
|
||||
HAS_VLLM = False
|
||||
print("The subsequent test requires vllm. Please refer to https://github.com/vllm-project/vllm")
|
||||
|
||||
|
||||
@pytest.mark.skipif(not HAS_VLLM, reason="requires vllm")
|
||||
@pytest.mark.parametrize("BATCH_SIZE", [1, 4, 7, 32])
|
||||
@pytest.mark.parametrize("BLOCK_SIZE", [8, 16, 32])
|
||||
@pytest.mark.parametrize("MAX_NUM_BLOCKS_PER_SEQ", [1, 8, 32])
|
||||
@pytest.mark.parametrize("HEAD_SIZE", [64, 128])
|
||||
@pytest.mark.parametrize("NUM_ATTN_HEADS", [16])
|
||||
@pytest.mark.parametrize("KV_GROUP_NUM", [1, 2, 16])
|
||||
@pytest.mark.parametrize("dtype", [torch.float16, torch.float32])
|
||||
@pytest.mark.parametrize("use_alibi_slopes", [True, False])
|
||||
def test_vllm_flash_decoding_attention(
|
||||
BATCH_SIZE, BLOCK_SIZE, MAX_NUM_BLOCKS_PER_SEQ, HEAD_SIZE, NUM_ATTN_HEADS, KV_GROUP_NUM, dtype, use_alibi_slopes
|
||||
):
|
||||
torch.manual_seed(123)
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.synchronize()
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
|
||||
NUM_KV_HEADS = NUM_ATTN_HEADS // KV_GROUP_NUM
|
||||
assert isinstance(NUM_KV_HEADS, int) and NUM_KV_HEADS > 0, "Invalid number of kv heads."
|
||||
MAX_SEQ_LEN = BLOCK_SIZE * MAX_NUM_BLOCKS_PER_SEQ
|
||||
device = get_current_device()
|
||||
|
||||
q, k_unpad, v_unpad, kv_seq_lengths = prepare_data(
|
||||
BATCH_SIZE, HEAD_SIZE, NUM_ATTN_HEADS, NUM_KV_HEADS, MAX_SEQ_LEN, dtype, device
|
||||
)
|
||||
|
||||
k_cache, v_cache, block_tables = generate_caches_and_block_tables_vllm(
|
||||
k_unpad, v_unpad, kv_seq_lengths, BATCH_SIZE, MAX_NUM_BLOCKS_PER_SEQ, BLOCK_SIZE, dtype, device
|
||||
)
|
||||
|
||||
block_tables = block_tables.to(device=device)
|
||||
max_seq_len_across_batch = kv_seq_lengths.max().item()
|
||||
output = torch.empty((BATCH_SIZE, NUM_ATTN_HEADS, HEAD_SIZE), dtype=dtype, device=device)
|
||||
sm_scale = 1.0 / (HEAD_SIZE**0.5)
|
||||
kv_scale = 1.0
|
||||
|
||||
k_torch = convert_kv_unpad_to_padded(k_unpad, kv_seq_lengths, BATCH_SIZE, max_seq_len_across_batch)
|
||||
v_torch = convert_kv_unpad_to_padded(v_unpad, kv_seq_lengths, BATCH_SIZE, max_seq_len_across_batch)
|
||||
torch_padding_mask = create_attention_mask(kv_seq_lengths, BATCH_SIZE, q_len, max_seq_len_across_batch, device)
|
||||
|
||||
if use_alibi_slopes:
|
||||
alibi_slopes = get_alibi_slopes(NUM_ATTN_HEADS, device)
|
||||
alibi_mask = generate_alibi_mask(alibi_slopes, NUM_ATTN_HEADS, max_seq_len_across_batch, device)
|
||||
torch_padding_mask = torch_padding_mask + alibi_mask
|
||||
|
||||
if len(torch_padding_mask.size()) == 4:
|
||||
torch_padding_mask = torch_padding_mask[:, :, -1:, :]
|
||||
else:
|
||||
torch_padding_mask = torch_padding_mask[:, -1:, :]
|
||||
else:
|
||||
alibi_slopes = None
|
||||
|
||||
if dtype == torch.float16:
|
||||
rtol = 1e-3
|
||||
atol = 1e-3
|
||||
|
||||
high_precision_q = q.to(torch.float32)
|
||||
high_precision_k_torch = k_torch.to(torch.float32)
|
||||
high_precision_v_torch = v_torch.to(torch.float32)
|
||||
out_ref = torch_attn_ref(
|
||||
high_precision_q,
|
||||
high_precision_k_torch,
|
||||
high_precision_v_torch,
|
||||
torch_padding_mask,
|
||||
BATCH_SIZE,
|
||||
q_len,
|
||||
max_seq_len_across_batch,
|
||||
NUM_ATTN_HEADS,
|
||||
NUM_KV_HEADS,
|
||||
HEAD_SIZE,
|
||||
).to(torch.float16)
|
||||
|
||||
else:
|
||||
rtol = 1e-5
|
||||
atol = 1e-7
|
||||
|
||||
out_ref = torch_attn_ref(
|
||||
q,
|
||||
k_torch,
|
||||
v_torch,
|
||||
torch_padding_mask,
|
||||
BATCH_SIZE,
|
||||
q_len,
|
||||
max_seq_len_across_batch,
|
||||
NUM_ATTN_HEADS,
|
||||
NUM_KV_HEADS,
|
||||
HEAD_SIZE,
|
||||
)
|
||||
|
||||
vllm_ops.paged_attention_v1(
|
||||
output,
|
||||
q.squeeze(2),
|
||||
k_cache,
|
||||
v_cache,
|
||||
NUM_KV_HEADS,
|
||||
sm_scale,
|
||||
block_tables,
|
||||
kv_seq_lengths,
|
||||
BLOCK_SIZE,
|
||||
max_seq_len_across_batch,
|
||||
alibi_slopes,
|
||||
"auto",
|
||||
kv_scale,
|
||||
)
|
||||
|
||||
# The alibi may introduce relatively large errors
|
||||
if use_alibi_slopes:
|
||||
rtol = 1e0
|
||||
|
||||
numpy_allclose(out_ref, output, rtol=rtol, atol=atol)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
BATCH_SIZE = [1, 4, 7, 32]
|
||||
BLOCK_SIZE = [8, 16, 32]
|
||||
MAX_NUM_BLOCKS_PER_SEQ = [1, 8, 32]
|
||||
HEAD_SIZE = [64, 128]
|
||||
NUM_ATTN_HEADS = [16]
|
||||
KV_GROUP_NUM = [1, 2, 16]
|
||||
DTYPE = [torch.float16, torch.float32]
|
||||
test_combinations = list(
|
||||
product(BATCH_SIZE, BLOCK_SIZE, MAX_NUM_BLOCKS_PER_SEQ, HEAD_SIZE, NUM_ATTN_HEADS, KV_GROUP_NUM, DTYPE)
|
||||
)
|
||||
for (
|
||||
batch_size,
|
||||
block_size,
|
||||
max_num_blocks_per_seq,
|
||||
head_size,
|
||||
num_attn_heads,
|
||||
kv_group_num,
|
||||
dtype,
|
||||
) in test_combinations:
|
||||
test_flash_decoding_attention(
|
||||
batch_size, block_size, max_num_blocks_per_seq, head_size, num_attn_heads, kv_group_num, dtype, True
|
||||
)
|
53
tests/test_infer/test_kernels/cuda/test_get_cos_and_sin.py
Normal file
53
tests/test_infer/test_kernels/cuda/test_get_cos_and_sin.py
Normal file
@@ -0,0 +1,53 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from colossalai.kernel.kernel_loader import InferenceOpsLoader
|
||||
from tests.test_infer.test_kernels.triton.test_xine_copy import get_cos_sin
|
||||
|
||||
inference_ops = InferenceOpsLoader().load()
|
||||
|
||||
|
||||
def numpy_equal(x, y):
|
||||
x_numpy = x.detach().cpu().numpy()
|
||||
y_numpy = y.detach().cpu().numpy()
|
||||
|
||||
np.testing.assert_equal(x_numpy, y_numpy)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("BATCH_SIZE", [4])
|
||||
@pytest.mark.parametrize("MAX_SEQ_LEN", [64])
|
||||
@pytest.mark.parametrize("HEAD_DIM", [64])
|
||||
@pytest.mark.parametrize("dtype", [torch.float16, torch.float32])
|
||||
def test_get_cos_and_sin(BATCH_SIZE, MAX_SEQ_LEN, HEAD_DIM, dtype):
|
||||
MAX_TOTAL_TOKENS = BATCH_SIZE * MAX_SEQ_LEN
|
||||
cos_cache = torch.randn((MAX_TOTAL_TOKENS, HEAD_DIM), dtype=dtype, device="cuda")
|
||||
sin_cache = torch.randn((MAX_TOTAL_TOKENS, HEAD_DIM), dtype=dtype, device="cuda")
|
||||
lengths = torch.randint(2, MAX_SEQ_LEN, (BATCH_SIZE,), device="cuda").to(torch.int32)
|
||||
|
||||
max_seq_len_in_batch = lengths.max()
|
||||
|
||||
# prefill
|
||||
cos_ref, sin_ref = get_cos_sin(lengths, cos_cache, sin_cache, is_prompts=True, dtype=dtype)
|
||||
|
||||
cos = torch.zeros_like(cos_ref)
|
||||
sin = torch.zeros_like(sin_ref)
|
||||
|
||||
inference_ops.get_cos_and_sin(cos_cache, sin_cache, cos, sin, lengths, max_seq_len_in_batch, True)
|
||||
|
||||
numpy_equal(cos, cos_ref)
|
||||
numpy_equal(sin, sin_ref)
|
||||
|
||||
# decoding
|
||||
ncos_ref, nsin_ref = get_cos_sin(lengths, cos_cache, sin_cache, is_prompts=False, dtype=dtype)
|
||||
|
||||
cos = torch.zeros_like(ncos_ref)
|
||||
sin = torch.zeros_like(nsin_ref)
|
||||
|
||||
inference_ops.get_cos_and_sin(cos_cache, sin_cache, cos, sin, lengths, max_seq_len_in_batch, False)
|
||||
numpy_equal(cos, ncos_ref)
|
||||
numpy_equal(sin, nsin_ref)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_get_cos_and_sin(16, 4096, 256, torch.float16)
|
157
tests/test_infer/test_kernels/cuda/test_kv_cache_memcpy.py
Normal file
157
tests/test_infer/test_kernels/cuda/test_kv_cache_memcpy.py
Normal file
@@ -0,0 +1,157 @@
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from colossalai.kernel.kernel_loader import InferenceOpsLoader
|
||||
from colossalai.utils import get_current_device
|
||||
from tests.test_infer.test_kernels.triton.kernel_utils import (
|
||||
generate_caches_and_block_tables_v3,
|
||||
mock_alloc_single_token,
|
||||
)
|
||||
|
||||
inference_ops = InferenceOpsLoader().load()
|
||||
|
||||
HEAD_DIM = 72
|
||||
|
||||
|
||||
def prepare_data(
|
||||
bsz,
|
||||
num_kv_heads,
|
||||
block_size,
|
||||
max_num_blocks_per_seq,
|
||||
context_lengths,
|
||||
device="cuda",
|
||||
dtype=torch.float16,
|
||||
):
|
||||
num_tokens = torch.sum(context_lengths).item()
|
||||
|
||||
max_seq_len_in_batch = context_lengths.max()
|
||||
cu_seqlens = F.pad(torch.cumsum(context_lengths, dim=0, dtype=torch.torch.int32), (1, 0))
|
||||
|
||||
kv_size = (num_tokens, num_kv_heads, HEAD_DIM)
|
||||
key = torch.empty(size=kv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
|
||||
value = torch.empty(size=kv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
|
||||
|
||||
k_cache_ref, v_cache_ref, block_tables = generate_caches_and_block_tables_v3(
|
||||
key, value, context_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
|
||||
)
|
||||
|
||||
block_tables = block_tables.to(device=device)
|
||||
k_cache = torch.zeros_like(k_cache_ref)
|
||||
v_cache = torch.zeros_like(v_cache_ref)
|
||||
|
||||
return key, value, k_cache, v_cache, cu_seqlens, block_tables, max_seq_len_in_batch, k_cache_ref, v_cache_ref
|
||||
|
||||
|
||||
def run_decode_copy_kv_to_caches(
|
||||
bsz: int,
|
||||
block_size: int,
|
||||
max_num_blocks_per_seq: int,
|
||||
num_kv_heads: int,
|
||||
same_context_len: bool,
|
||||
):
|
||||
torch.manual_seed(123)
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.synchronize()
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
|
||||
n = 1
|
||||
|
||||
max_seq_len = block_size * max_num_blocks_per_seq
|
||||
dtype = torch.float32
|
||||
device = get_current_device()
|
||||
|
||||
assert max_seq_len > n, "max_seq_len must be greater than n"
|
||||
|
||||
past_kv_seq_lengths = (
|
||||
torch.tensor([max_seq_len - n for _ in range(bsz)], dtype=torch.int32, device=device)
|
||||
if same_context_len
|
||||
else torch.randint(low=1, high=max_seq_len - n, size=(bsz,), dtype=torch.int32, device=device)
|
||||
)
|
||||
|
||||
key, value, k_cache, v_cache, _, block_tables, _, _, _ = prepare_data(
|
||||
bsz, num_kv_heads, block_size, max_num_blocks_per_seq, past_kv_seq_lengths, device, dtype
|
||||
)
|
||||
|
||||
new_k = torch.randn((bsz, num_kv_heads, HEAD_DIM), dtype=dtype, device=device)
|
||||
new_v = torch.randn((bsz, num_kv_heads, HEAD_DIM), dtype=dtype, device=device)
|
||||
|
||||
# mock allocating blocks for the new k/v and update block tables
|
||||
for _ in range(n):
|
||||
mock_alloc_single_token(block_tables, past_kv_seq_lengths, block_size)
|
||||
past_kv_seq_lengths += 1
|
||||
|
||||
inference_ops.decode_kv_cache_memcpy(new_k, new_v, k_cache, v_cache, past_kv_seq_lengths, block_tables)
|
||||
|
||||
past_kv_seq_len = past_kv_seq_lengths - 1
|
||||
target_block_ids = block_tables[range(0, block_tables.size(0)), past_kv_seq_len // block_size]
|
||||
offsets_in_block = past_kv_seq_len % block_size
|
||||
k_target = k_cache[target_block_ids, :, :, offsets_in_block, :]
|
||||
k_source = new_k.squeeze()
|
||||
v_target = v_cache[target_block_ids, :, offsets_in_block, :]
|
||||
k_target = k_target.reshape(v_target.shape)
|
||||
v_source = new_v.squeeze()
|
||||
|
||||
assert k_target.shape == k_source.shape
|
||||
assert torch.equal(k_target, k_source)
|
||||
assert v_target.shape == v_source.shape
|
||||
assert torch.equal(v_target, v_source)
|
||||
|
||||
|
||||
def run_context_copy_kv_to_cache(
|
||||
bsz: int,
|
||||
block_size: int,
|
||||
max_num_blocks_per_seq: int,
|
||||
num_kv_heads: int,
|
||||
same_context_len: bool,
|
||||
):
|
||||
torch.manual_seed(123)
|
||||
|
||||
assert isinstance(num_kv_heads, int) and num_kv_heads > 0, "Invalid number of kv heads."
|
||||
max_seq_len = max_num_blocks_per_seq * block_size
|
||||
dtype = torch.float16
|
||||
device = get_current_device()
|
||||
|
||||
if same_context_len:
|
||||
context_lengths = torch.tensor([max_seq_len for _ in range(bsz)], dtype=torch.int32, device=device)
|
||||
else:
|
||||
context_lengths = torch.randint(low=1, high=max_seq_len, size=(bsz,), dtype=torch.int32, device=device)
|
||||
|
||||
(
|
||||
key,
|
||||
value,
|
||||
k_cache,
|
||||
v_cache,
|
||||
cu_seqlens,
|
||||
block_tables,
|
||||
max_seq_len_in_batch,
|
||||
k_cache_ref,
|
||||
v_cache_ref,
|
||||
) = prepare_data(bsz, num_kv_heads, block_size, max_num_blocks_per_seq, context_lengths, device, dtype)
|
||||
|
||||
inference_ops.context_kv_cache_memcpy(
|
||||
key, value, k_cache, v_cache, context_lengths, cu_seqlens, block_tables, max_seq_len_in_batch
|
||||
)
|
||||
|
||||
assert torch.equal(k_cache, k_cache_ref)
|
||||
assert torch.equal(v_cache, v_cache_ref)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("bsz", [4, 7, 32])
|
||||
@pytest.mark.parametrize("block_size", [16, 32, 64])
|
||||
@pytest.mark.parametrize("max_num_blocks_per_seq", [8, 32])
|
||||
@pytest.mark.parametrize("num_kv_heads", [16])
|
||||
@pytest.mark.parametrize("same_context_len", [True, False])
|
||||
def test_kv_cache_memcopy(
|
||||
bsz: int,
|
||||
block_size: int,
|
||||
max_num_blocks_per_seq: int,
|
||||
num_kv_heads: int,
|
||||
same_context_len: bool,
|
||||
):
|
||||
run_context_copy_kv_to_cache(bsz, block_size, max_num_blocks_per_seq, num_kv_heads, same_context_len)
|
||||
run_decode_copy_kv_to_caches(bsz, block_size, max_num_blocks_per_seq, num_kv_heads, same_context_len)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_kv_cache_memcopy(4, 32, 8, 16, True)
|
51
tests/test_infer/test_kernels/cuda/test_rms_layernorm.py
Normal file
51
tests/test_infer/test_kernels/cuda/test_rms_layernorm.py
Normal file
@@ -0,0 +1,51 @@
|
||||
import pytest
|
||||
import torch
|
||||
from transformers.models.llama.modeling_llama import LlamaRMSNorm
|
||||
|
||||
from colossalai.kernel.kernel_loader import InferenceOpsLoader
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
inference_ops = InferenceOpsLoader().load()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("M", [2, 4, 8, 16])
|
||||
@pytest.mark.parametrize("N", [64, 128, 512, 5120])
|
||||
def test_rms_layernorm(M: int, N: int):
|
||||
torch.manual_seed(123)
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.synchronize()
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
|
||||
device = get_current_device()
|
||||
|
||||
dtype = torch.float16
|
||||
eps = 1e-5
|
||||
x_shape = (M, N)
|
||||
w_shape = (x_shape[-1],)
|
||||
weight = torch.ones(w_shape, dtype=dtype, device=device)
|
||||
residual = torch.rand(x_shape, dtype=dtype, device=device)
|
||||
residual_copy = residual.clone()
|
||||
rms_norm = LlamaRMSNorm(hidden_size=N, eps=eps).cuda()
|
||||
x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device="cuda")
|
||||
x_copy = x.clone()
|
||||
|
||||
y_cuda = torch.empty_like(x)
|
||||
inference_ops.rms_layernorm(y_cuda, x, weight, eps)
|
||||
y_llama = rms_norm.forward(x).to(dtype)
|
||||
|
||||
assert y_cuda.shape == y_llama.shape
|
||||
assert torch.allclose(y_cuda, y_llama, atol=1e-5, rtol=1e-3)
|
||||
|
||||
inference_ops.fused_add_rms_layernorm(x, residual, weight, eps)
|
||||
y_cuda = x
|
||||
|
||||
x = x_copy + residual_copy
|
||||
y_llama = rms_norm.forward(x).to(dtype)
|
||||
|
||||
assert y_cuda.shape == y_llama.shape
|
||||
assert torch.allclose(y_cuda, y_llama, atol=1e-5, rtol=1e-3)
|
||||
assert torch.allclose(x, residual, atol=1e-5, rtol=1e-3)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_rms_layernorm(16, 5120)
|
130
tests/test_infer/test_kernels/cuda/test_rotary_embdding_unpad.py
Normal file
130
tests/test_infer/test_kernels/cuda/test_rotary_embdding_unpad.py
Normal file
@@ -0,0 +1,130 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
import torch
|
||||
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb
|
||||
|
||||
from colossalai.kernel.kernel_loader import InferenceOpsLoader
|
||||
|
||||
inference_ops = InferenceOpsLoader().load()
|
||||
|
||||
from tests.test_infer.test_kernels.triton.kernel_utils import mock_alloc_block_table_and_kvcache_v3
|
||||
from tests.test_infer.test_kernels.triton.test_rotary_embdding_unpad import torch_rotary_emb
|
||||
|
||||
|
||||
def numpy_allclose(x, y, rtol, atol):
|
||||
x_numpy = x.detach().cpu().numpy()
|
||||
y_numpy = y.detach().cpu().numpy()
|
||||
|
||||
np.testing.assert_allclose(x_numpy, y_numpy, rtol=rtol, atol=atol)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("BATCH_SIZE", [4])
|
||||
@pytest.mark.parametrize("SEQ_LEN", [64])
|
||||
@pytest.mark.parametrize("H", [32])
|
||||
@pytest.mark.parametrize("K_H", [16, 32])
|
||||
@pytest.mark.parametrize("D", [64])
|
||||
@pytest.mark.parametrize("dtype", [torch.float16, torch.float32])
|
||||
def test_rotary_emb(BATCH_SIZE, SEQ_LEN, H, K_H, D, dtype):
|
||||
torch.manual_seed(10)
|
||||
TOTAL_TOKENS = BATCH_SIZE * SEQ_LEN
|
||||
# our crafted op equals to Transformers
|
||||
x0 = torch.randn(TOTAL_TOKENS, SEQ_LEN, D, dtype=dtype)
|
||||
x1 = torch.randn(TOTAL_TOKENS, SEQ_LEN, D, dtype=dtype)
|
||||
emb = LlamaRotaryEmbedding(D)
|
||||
cos, sin = emb(x0, TOTAL_TOKENS)
|
||||
cos_2 = cos[:, : D // 2]
|
||||
sin_2 = sin[:, : D // 2]
|
||||
position_ids = torch.arange(TOTAL_TOKENS)
|
||||
embd_x0, _ = apply_rotary_pos_emb(x0, x1, cos, sin, position_ids)
|
||||
embd_stimulated_x = torch_rotary_emb(x0, cos_2, sin_2)
|
||||
assert torch.allclose(embd_x0, embd_stimulated_x)
|
||||
|
||||
# create data
|
||||
block_size = 32
|
||||
max_blocks_per_sequence = (TOTAL_TOKENS + block_size - 1) // block_size
|
||||
q_shape = (TOTAL_TOKENS, H, D)
|
||||
q = -2.3 + 0.5 * torch.randn(q_shape, dtype=dtype, device="cuda")
|
||||
k_shape = (TOTAL_TOKENS, K_H, D)
|
||||
k = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
|
||||
cos_shape = (TOTAL_TOKENS, D // 2)
|
||||
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
|
||||
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
|
||||
x = 16 // torch.tensor([], dtype=dtype).element_size()
|
||||
k_cache_shape = (BATCH_SIZE * max_blocks_per_sequence, K_H, D // x, block_size, x)
|
||||
v_cache_shape = (BATCH_SIZE * max_blocks_per_sequence, K_H, block_size, D)
|
||||
k_cache = torch.zeros(size=k_cache_shape, dtype=dtype, device="cuda")
|
||||
v = torch.randn_like(k)
|
||||
v_cache = torch.zeros(size=v_cache_shape, dtype=dtype, device="cuda")
|
||||
past_kv_seq_lengths = torch.tensor([SEQ_LEN - 1 for _ in range(BATCH_SIZE)], dtype=torch.int32, device="cuda")
|
||||
block_tables = mock_alloc_block_table_and_kvcache_v3(
|
||||
k, v, k_cache, v_cache, past_kv_seq_lengths, BATCH_SIZE, max_blocks_per_sequence, block_size
|
||||
)
|
||||
new_k = torch.randn((BATCH_SIZE, K_H, D), dtype=dtype, device="cuda")
|
||||
new_q = torch.randn((BATCH_SIZE, H, D), dtype=dtype, device="cuda")
|
||||
new_v = torch.randn_like(new_k)
|
||||
|
||||
kv_seq_lengths = past_kv_seq_lengths + 1
|
||||
block_tables = block_tables.to(device="cuda")
|
||||
|
||||
new_q_copy = new_q.clone()
|
||||
new_k_copy = new_k.clone()
|
||||
|
||||
if dtype == torch.float16:
|
||||
rtol = 1e-3
|
||||
atol = 1e-3
|
||||
|
||||
new_q_fp16 = new_q.clone()
|
||||
new_k_fp16 = new_k.clone()
|
||||
|
||||
high_precision_cos = cos[:BATCH_SIZE].to(torch.float32)
|
||||
high_precision_sin = sin[:BATCH_SIZE].to(torch.float32)
|
||||
high_precision_q = new_q.to(torch.float32)
|
||||
high_precision_k = new_k.to(torch.float32)
|
||||
q_ref = torch_rotary_emb(high_precision_q, high_precision_cos, high_precision_sin).to(torch.float16)
|
||||
k_ref = torch_rotary_emb(high_precision_k, high_precision_cos, high_precision_sin).to(torch.float16)
|
||||
|
||||
else:
|
||||
rtol = 1e-5
|
||||
atol = 1e-7
|
||||
|
||||
q_ref = torch_rotary_emb(new_q, cos[:BATCH_SIZE], sin[:BATCH_SIZE])
|
||||
k_ref = torch_rotary_emb(new_k, cos[:BATCH_SIZE], sin[:BATCH_SIZE])
|
||||
|
||||
inference_ops.rotary_embedding_and_cache_copy(
|
||||
new_q, new_k, new_v, cos, sin, k_cache, v_cache, kv_seq_lengths, block_tables, True
|
||||
)
|
||||
|
||||
inference_ops.rotary_embedding(new_q_copy, new_k_copy, cos, sin, True)
|
||||
|
||||
past_kv_seq_len = kv_seq_lengths - 1
|
||||
target_block_ids = block_tables[range(0, block_tables.size(0)), past_kv_seq_len // block_size]
|
||||
offsets_in_block = past_kv_seq_len % block_size
|
||||
k_target = k_cache[target_block_ids, :, :, offsets_in_block, :].squeeze()
|
||||
k_source = new_k_copy.squeeze()
|
||||
v_target = v_cache[target_block_ids, :, offsets_in_block, :].squeeze()
|
||||
k_target = k_target.reshape(v_target.shape)
|
||||
v_source = new_v.squeeze()
|
||||
|
||||
numpy_allclose(new_q, q_ref, rtol=rtol, atol=atol)
|
||||
numpy_allclose(k_target, k_ref, rtol=rtol, atol=atol)
|
||||
|
||||
numpy_allclose(new_q_copy, q_ref, rtol=rtol, atol=atol)
|
||||
numpy_allclose(new_k_copy, k_ref, rtol=rtol, atol=atol)
|
||||
|
||||
assert k_target.shape == k_source.shape
|
||||
numpy_allclose(k_target, k_source, rtol=rtol, atol=atol)
|
||||
|
||||
assert v_target.shape == v_source.shape
|
||||
assert torch.equal(v_target, v_source)
|
||||
|
||||
if dtype == torch.float16:
|
||||
# After testing cuda fp16 high_precision, it was found to have higher precision than torch fp16. Therefore, the threshold here has been relaxed to pass the test.
|
||||
rtol = 1e-3
|
||||
atol = 1e-1
|
||||
inference_ops.rotary_embedding(new_q_fp16, new_k_fp16, cos, sin, False)
|
||||
numpy_allclose(new_q_copy, new_q_fp16, rtol=rtol, atol=atol)
|
||||
numpy_allclose(new_k_copy, new_k_fp16, rtol=rtol, atol=atol)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_rotary_emb(16, 64, 32, 16, 128, torch.float16)
|
33
tests/test_infer/test_kernels/cuda/test_silu_and_mul.py
Normal file
33
tests/test_infer/test_kernels/cuda/test_silu_and_mul.py
Normal file
@@ -0,0 +1,33 @@
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from colossalai.kernel.kernel_loader import InferenceOpsLoader
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
inference_ops = InferenceOpsLoader().load()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("SHAPE_X", [2])
|
||||
@pytest.mark.parametrize("SHAPE_Y", [64])
|
||||
@pytest.mark.parametrize("SHAPE_Z", [11008])
|
||||
@pytest.mark.parametrize("dtype", [torch.float32, torch.float16])
|
||||
def test_silu_and_mul(SHAPE_X, SHAPE_Y, SHAPE_Z, dtype):
|
||||
torch.manual_seed(5)
|
||||
device = get_current_device()
|
||||
ref_input = torch.randn(SHAPE_X, SHAPE_Y, SHAPE_Z, dtype=dtype, device=device)
|
||||
origin_input = ref_input.clone()
|
||||
|
||||
act_out = torch.nn.functional.silu(ref_input[0], inplace=True)
|
||||
ref_out = act_out * ref_input[1]
|
||||
|
||||
origin_out = inference_ops.silu_and_mul(origin_input)
|
||||
|
||||
if dtype == torch.float32:
|
||||
assert torch.allclose(origin_out, ref_out, atol=1e-5, rtol=1e-5)
|
||||
else:
|
||||
assert torch.allclose(origin_out, ref_out, atol=1e-3, rtol=1e-3)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_silu_and_mul(2, 64, 11008, torch.float32)
|
||||
test_silu_and_mul(2, 64, 11008, torch.float16)
|
Reference in New Issue
Block a user