[shardformer] support lazy init (#4202)

* [shardformer] support lazy init

* [shardformer] linear support lazy init

* [shardformer] embedding support lazy init

* [shardformer] norm support lazy init

* [shardformer] fused linear support lazy init

* [test] update shardformer test layer

* [test] shardformer with lazy init fit ddp

* [lazy] hotfix deepcopy of param

* [shardformer] fix bert policy and update test

* [shardformer] fix bloom policy and update test

* [shardformer] fix opt policy and update test

* [shardformer] fix t5 policy and update test

* [shardformer] fix gpt2 policy and update test

* [shardformer] fix llama policy and update test
This commit is contained in:
Hongxin Liu
2023-07-10 10:48:53 +08:00
parent f3bcc292c8
commit 890774b2fb
25 changed files with 263 additions and 157 deletions

View File

@@ -19,11 +19,12 @@ class OPTPolicy(Policy):
r"""
Reshape the Embedding layer to make the embedding dimension divisible by world_size
"""
vocab_size = self.model.config.vocab_size
world_size = self.shard_config.tensor_parallel_size
if vocab_size % world_size != 0:
new_vocab_size = vocab_size + world_size - vocab_size % world_size
self.model.resize_token_embeddings(new_vocab_size)
if self.shard_config.enable_tensor_parallelism:
vocab_size = self.model.config.vocab_size
world_size = self.shard_config.tensor_parallel_size
if vocab_size % world_size != 0:
new_vocab_size = vocab_size + world_size - vocab_size % world_size
self.model.resize_token_embeddings(new_vocab_size)
return self.model
def module_policy(self):
@@ -116,14 +117,15 @@ class OPTForCausalLMPolicy(OPTPolicy):
return policy
def postprocess(self):
binding_map = {
'model.decoder.embed_tokens': 'lm_head',
}
if self.shard_config.enable_tensor_parallelism:
binding_map = {
'model.decoder.embed_tokens': 'lm_head',
}
for k, v in binding_map.items():
src_mod = getattr_(self.model, k)
dst_mod = getattr_(self.model, v)
dst_mod.weight = src_mod.weight
for k, v in binding_map.items():
src_mod = getattr_(self.model, k)
dst_mod = getattr_(self.model, v)
dst_mod.weight = src_mod.weight
return self.model