mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-27 04:33:04 +00:00
[shardformer] support lazy init (#4202)
* [shardformer] support lazy init * [shardformer] linear support lazy init * [shardformer] embedding support lazy init * [shardformer] norm support lazy init * [shardformer] fused linear support lazy init * [test] update shardformer test layer * [test] shardformer with lazy init fit ddp * [lazy] hotfix deepcopy of param * [shardformer] fix bert policy and update test * [shardformer] fix bloom policy and update test * [shardformer] fix opt policy and update test * [shardformer] fix t5 policy and update test * [shardformer] fix gpt2 policy and update test * [shardformer] fix llama policy and update test
This commit is contained in:
@@ -24,11 +24,12 @@ class T5BasePolicy(Policy):
|
||||
r"""
|
||||
Reshape the Embedding layer to make the embedding dimension divisible by world_size
|
||||
"""
|
||||
vocab_size = self.model.config.vocab_size
|
||||
world_size = self.shard_config.tensor_parallel_size
|
||||
if vocab_size % world_size != 0:
|
||||
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
||||
self.model.resize_token_embeddings(new_vocab_size)
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
vocab_size = self.model.config.vocab_size
|
||||
world_size = self.shard_config.tensor_parallel_size
|
||||
if vocab_size % world_size != 0:
|
||||
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
||||
self.model.resize_token_embeddings(new_vocab_size)
|
||||
return self.model
|
||||
|
||||
def module_policy(self):
|
||||
@@ -164,11 +165,12 @@ class T5BasePolicy(Policy):
|
||||
return policy
|
||||
|
||||
def postprocess(self):
|
||||
binding_map = [["shared", "encoder.embed_tokens"], ["shared", "decoder.embed_tokens"]]
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
binding_map = [["shared", "encoder.embed_tokens"], ["shared", "decoder.embed_tokens"]]
|
||||
|
||||
for k, v in binding_map:
|
||||
mod = getattr_(self.model, k)
|
||||
setattr_(self.model, v, mod)
|
||||
for k, v in binding_map:
|
||||
mod = getattr_(self.model, k)
|
||||
setattr_(self.model, v, mod)
|
||||
return self.model
|
||||
|
||||
|
||||
@@ -211,13 +213,13 @@ class T5ForConditionalGenerationPolicy(T5BasePolicy):
|
||||
|
||||
def postprocess(self):
|
||||
super().postprocess()
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
binding_map = {"shared": "lm_head"}
|
||||
|
||||
binding_map = {"shared": "lm_head"}
|
||||
|
||||
for k, v in binding_map.items():
|
||||
src_mod = getattr_(self.model, k)
|
||||
dst_mod = getattr_(self.model, v)
|
||||
dst_mod.weight = src_mod.weight
|
||||
for k, v in binding_map.items():
|
||||
src_mod = getattr_(self.model, k)
|
||||
dst_mod = getattr_(self.model, v)
|
||||
dst_mod.weight = src_mod.weight
|
||||
|
||||
return self.model
|
||||
|
||||
@@ -239,11 +241,12 @@ class T5EncoderPolicy(T5BasePolicy):
|
||||
return base_policy
|
||||
|
||||
def postprocess(self):
|
||||
binding_map = [
|
||||
["shared", "encoder.embed_tokens"],
|
||||
]
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
binding_map = [
|
||||
["shared", "encoder.embed_tokens"],
|
||||
]
|
||||
|
||||
for k, v in binding_map:
|
||||
mod = getattr_(self.model, k)
|
||||
setattr_(self.model, v, mod)
|
||||
for k, v in binding_map:
|
||||
mod = getattr_(self.model, k)
|
||||
setattr_(self.model, v, mod)
|
||||
return self.model
|
||||
|
Reference in New Issue
Block a user