[shardformer] support lazy init (#4202)

* [shardformer] support lazy init

* [shardformer] linear support lazy init

* [shardformer] embedding support lazy init

* [shardformer] norm support lazy init

* [shardformer] fused linear support lazy init

* [test] update shardformer test layer

* [test] shardformer with lazy init fit ddp

* [lazy] hotfix deepcopy of param

* [shardformer] fix bert policy and update test

* [shardformer] fix bloom policy and update test

* [shardformer] fix opt policy and update test

* [shardformer] fix t5 policy and update test

* [shardformer] fix gpt2 policy and update test

* [shardformer] fix llama policy and update test
This commit is contained in:
Hongxin Liu
2023-07-10 10:48:53 +08:00
parent f3bcc292c8
commit 890774b2fb
25 changed files with 263 additions and 157 deletions

View File

@@ -1,15 +1,22 @@
from contextlib import nullcontext
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.testing import assert_close
import colossalai
from colossalai.lazy import LazyInitContext
from colossalai.shardformer.layer import Embedding1D
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
def check_embedding_1d():
embedding = nn.Embedding(32, 128).cuda()
@parameterize('lazy_init', [False, True])
def check_embedding_1d(lazy_init: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
with ctx:
embedding = nn.Embedding(32, 128).cuda()
embedding_1d = Embedding1D.from_native_module(embedding, process_group=None)
assert embedding_1d.weight.shape == torch.Size([32, 64])

View File

@@ -1,14 +1,21 @@
from contextlib import nullcontext
import torch
import torch.nn as nn
from torch.testing import assert_close
import colossalai
from colossalai.lazy import LazyInitContext
from colossalai.shardformer.layer import FusedLayerNorm
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
def check_layernorm():
norm = nn.LayerNorm(128, 0.00001).cuda()
@parameterize('lazy_init', [False, True])
def check_layernorm(lazy_init: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
with ctx:
norm = nn.LayerNorm(128, 0.00001).cuda()
norm1d = FusedLayerNorm.from_native_module(norm, process_group=None)
assert norm1d.weight.shape == torch.Size([128])

View File

@@ -1,16 +1,23 @@
from contextlib import nullcontext
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.testing import assert_close
import colossalai
from colossalai.lazy import LazyInitContext
from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row
from colossalai.tensor.d_tensor import is_distributed_tensor
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
def check_linear_1d_col():
linear = nn.Linear(32, 128).cuda()
@parameterize('lazy_init', [False, True])
def check_linear_1d_col(lazy_init: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
with ctx:
linear = nn.Linear(32, 128).cuda()
linear_col = Linear1D_Col.from_native_module(linear, process_group=None, gather_output=True)
# ensure that the parameters are distributed
@@ -50,8 +57,12 @@ def check_linear_1d_col():
assert_close(x_for_unshard.grad, x_for_shard.grad)
def check_linear_1d_row():
linear = nn.Linear(32, 128).cuda()
@parameterize('lazy_init', [False, True])
def check_linear_1d_row(lazy_init: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
with ctx:
linear = nn.Linear(32, 128).cuda()
linear_row = Linear1D_Row.from_native_module(linear, process_group=None, parallel_input=False)
assert linear_row.weight.shape == torch.Size([128, 16])
@@ -83,9 +94,13 @@ def check_linear_1d_row():
assert_close(x_for_unshard.grad, x_for_shard.grad)
def check_linear_col_plus_row():
linear_1 = nn.Linear(32, 128).cuda()
linear_2 = nn.Linear(128, 32).cuda()
@parameterize('lazy_init', [False, True])
def check_linear_col_plus_row(lazy_init: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
with ctx:
linear_1 = nn.Linear(32, 128).cuda()
linear_2 = nn.Linear(128, 32).cuda()
linear_col = Linear1D_Col.from_native_module(linear_1, process_group=None, gather_output=False)
linear_row = Linear1D_Row.from_native_module(linear_2, process_group=None, parallel_input=True)

View File

@@ -1,12 +1,15 @@
from contextlib import nullcontext
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.testing import assert_close
import colossalai
from colossalai.lazy import LazyInitContext
from colossalai.shardformer.layer import GPT2FusedLinearConv1D_Col, GPT2FusedLinearConv1D_Row
from colossalai.shardformer.layer.qkv_fused_linear import split_fused_qkv_in_gpt2_style
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
# This code is copied from https://github.com/huggingface/transformers
@@ -50,8 +53,12 @@ def rearrange(tensor: torch.Tensor, dim: int):
return rearanged_tensor
def check_linear_conv_1d_col():
linear = Conv1D(192, 48).cuda()
@parameterize('lazy_init', [False, True])
def check_linear_conv_1d_col(lazy_init: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
with ctx:
linear = Conv1D(192, 48).cuda()
linear_conv_col = GPT2FusedLinearConv1D_Col.from_native_module(linear,
process_group=None,
gather_output=True,
@@ -80,8 +87,12 @@ def check_linear_conv_1d_col():
assert_close(target_grad, linear_conv_col.weight.grad)
def check_linear_conv_1d_row():
linear = Conv1D(192, 48).cuda()
@parameterize('lazy_init', [False, True])
def check_linear_conv_1d_row(lazy_init: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
with ctx:
linear = Conv1D(192, 48).cuda()
linear_row = GPT2FusedLinearConv1D_Row.from_native_module(linear, process_group=None, parallel_input=False)
assert linear.weight.shape == torch.Size([48, 192])

View File

@@ -1,15 +1,23 @@
from contextlib import nullcontext
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.testing import assert_close
import colossalai
from colossalai.shardformer.layer import VocabParallelEmbedding1D
from colossalai.lazy import LazyInitContext
from colossalai.shardformer.layer import GPT2FusedLinearConv1D_Col, GPT2FusedLinearConv1D_Row, VocabParallelEmbedding1D
from colossalai.shardformer.layer.qkv_fused_linear import split_fused_qkv_in_gpt2_style
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
def check_vocab_embedding_1d():
embedding = nn.Embedding(128, 32).to('cuda')
@parameterize('lazy_init', [False, True])
def check_vocab_embedding_1d(lazy_init: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
with ctx:
embedding = nn.Embedding(128, 32).to('cuda')
dist_embedding_1d = VocabParallelEmbedding1D.from_native_module(embedding, process_group=None)
assert dist_embedding_1d.weight.shape == torch.Size([64, 32])

View File

@@ -1,19 +1,24 @@
import copy
from contextlib import nullcontext
from colossalai.lazy import LazyInitContext
from colossalai.shardformer import ShardConfig, ShardFormer
def build_model(model_fn, enable_fused_normalization=True, enable_tensor_parallelism=True):
# create new model
org_model = model_fn().cuda()
def build_model(model_fn, enable_fused_normalization=True, enable_tensor_parallelism=True, use_lazy_init: bool = False):
ctx = LazyInitContext() if use_lazy_init else nullcontext()
with ctx:
# create new model
org_model = model_fn()
model_copy = copy.deepcopy(org_model)
if use_lazy_init:
ctx.materialize(org_model)
# shard model
shard_config = ShardConfig(enable_fused_normalization=enable_fused_normalization,
enable_tensor_parallelism=enable_tensor_parallelism)
model_copy = copy.deepcopy(org_model)
shard_former = ShardFormer(shard_config=shard_config)
sharded_model, shared_params = shard_former.optimize(model_copy)
return org_model, sharded_model.cuda()
return org_model.cuda(), sharded_model.cuda()
def run_forward(original_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):

View File

@@ -67,12 +67,14 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
def run_bert_test(enable_fused_normalization, enable_tensor_parallelism):
@parameterize('enable_fused_normalization', [False, True])
@parameterize('enable_tensor_parallelism', [False, True])
@parameterize('use_lazy_init', [False, True])
def run_bert_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
sub_model_zoo = model_zoo.get_sub_registry('transformers_bert')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
use_lazy_init)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()

View File

@@ -69,10 +69,12 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
def run_bloom_test(enable_fused_normalization, enable_tensor_parallelism):
@parameterize('use_lazy_init', [False, True])
def run_bloom_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
sub_model_zoo = model_zoo.get_sub_registry('transformers_bloom')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
use_lazy_init)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()

View File

@@ -69,10 +69,12 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
def run_gpt2_test(enable_fused_normalization, enable_tensor_parallelism):
@parameterize('use_lazy_init', [False, True])
def run_gpt2_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
sub_model_zoo = model_zoo.get_sub_registry('transformers_gpt')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
use_lazy_init)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()

View File

@@ -72,10 +72,12 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
def run_gpt2_llama(enable_fused_normalization, enable_tensor_parallelism):
@parameterize('use_lazy_init', [False, True])
def run_gpt2_llama(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
sub_model_zoo = model_zoo.get_sub_registry('transformers_llama')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
use_lazy_init)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()

View File

@@ -71,10 +71,12 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
def run_t5_test(enable_fused_normalization, enable_tensor_parallelism):
@parameterize('use_lazy_init', [False, True])
def run_t5_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
sub_model_zoo = model_zoo.get_sub_registry('transformers_opt')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
use_lazy_init)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()

View File

@@ -82,10 +82,12 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
def run_t5_test(enable_fused_normalization, enable_tensor_parallelism):
@parameterize('use_lazy_init', [False, True])
def run_t5_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
sub_model_zoo = model_zoo.get_sub_registry('transformers_t5')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
use_lazy_init)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()

View File

@@ -1,3 +1,5 @@
from contextlib import nullcontext
import pytest
import torch
import torch.distributed as dist
@@ -5,15 +7,15 @@ from torch.nn.parallel import DistributedDataParallel as DDP
import colossalai
from colossalai.cluster import DistCoordinator
from colossalai.lazy import LazyInitContext
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer import ShardConfig, ShardFormer
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
from tests.kit.model_zoo import model_zoo
def check_shardformer_with_ddp(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
@parameterize('lazy_init', [True, False])
def check_shardformer_with_ddp(lazy_init: bool):
sub_model_zoo = model_zoo.get_sub_registry('transformers_gpt')
@@ -41,9 +43,12 @@ def check_shardformer_with_ddp(rank, world_size, port):
shard_config = ShardConfig(tensor_parallel_process_group=tp_process_group, enable_fused_normalization=True)
shardformer = ShardFormer(shard_config=shard_config)
ctx = LazyInitContext() if lazy_init else nullcontext()
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
# create and shard model
model = model_fn().cuda()
with ctx:
model = model_fn().cuda()
sharded_model, _ = shardformer.optimize(model)
# add ddp
@@ -65,13 +70,18 @@ def check_shardformer_with_ddp(rank, world_size, port):
torch.cuda.empty_cache()
def run_dist(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
check_shardformer_with_ddp()
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_gpt2():
spawn(check_shardformer_with_ddp, 4)
spawn(run_dist, 4)
if __name__ == "__main__":
test_gpt2()
test_gpt2()