mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-02 17:46:42 +00:00
[legacy] move trainer to legacy (#4545)
* [legacy] move trainer to legacy * [doc] update docs related to trainer * [test] ignore legacy test
This commit is contained in:
108
tests/test_legacy/test_trainer/test_pipeline/test_p2p.py
Normal file
108
tests/test_legacy/test_trainer/test_pipeline/test_p2p.py
Normal file
@@ -0,0 +1,108 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.communication import (
|
||||
recv_backward,
|
||||
recv_forward,
|
||||
recv_obj_meta,
|
||||
send_backward,
|
||||
send_backward_recv_forward,
|
||||
send_forward,
|
||||
send_forward_recv_backward,
|
||||
send_obj_meta,
|
||||
)
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
BATCH_SIZE = 4
|
||||
SEQ_LENGTH = 2
|
||||
HIDDEN_SIZE = 16
|
||||
|
||||
CONFIG = dict(parallel=dict(pipeline=dict(size=4), tensor=dict(size=1, mode=None)), seed=1024)
|
||||
|
||||
|
||||
def check_equal(A, B):
|
||||
return torch.allclose(A, B, rtol=1e-5, atol=1e-3)
|
||||
|
||||
|
||||
def check_forward(output_tensor, rank, logger):
|
||||
dist.barrier()
|
||||
if gpc.is_first_rank(ParallelMode.PIPELINE):
|
||||
tensor = output_tensor.clone()
|
||||
else:
|
||||
tensor = recv_forward(output_tensor.shape)
|
||||
logger.info('Rank {} received forward. Correct tensor: {}'.format(rank, check_equal(tensor, output_tensor)))
|
||||
if not gpc.is_last_rank(ParallelMode.PIPELINE):
|
||||
send_forward(tensor)
|
||||
logger.info('Rank {} sent forward.'.format(rank))
|
||||
|
||||
|
||||
def check_backward(output_grad, rank, logger):
|
||||
dist.barrier()
|
||||
if gpc.is_last_rank(ParallelMode.PIPELINE):
|
||||
grad = output_grad.clone()
|
||||
else:
|
||||
grad = recv_backward(output_grad.shape)
|
||||
logger.info('Rank {} received backward. Correct grad: {}'.format(rank, check_equal(grad, output_grad)))
|
||||
if not gpc.is_first_rank(ParallelMode.PIPELINE):
|
||||
send_backward(grad)
|
||||
logger.info('Rank {} sent backward.'.format(rank))
|
||||
|
||||
|
||||
def check_forward_backward(output_tensor, output_grad, rank, logger):
|
||||
dist.barrier()
|
||||
if not gpc.is_first_rank(ParallelMode.PIPELINE):
|
||||
tensor = send_backward_recv_forward(output_grad, output_tensor.shape)
|
||||
logger.info('Rank {} sent backward received forward. Correct tensor: {}'.format(
|
||||
rank, check_equal(tensor, output_tensor)))
|
||||
if not gpc.is_last_rank(ParallelMode.PIPELINE):
|
||||
grad = send_forward_recv_backward(output_tensor, output_grad.shape)
|
||||
logger.info('Rank {} sent forward received backward. Correct grad: {}'.format(
|
||||
rank, check_equal(grad, output_grad)))
|
||||
|
||||
|
||||
def check_comm(size, rank, prev_rank, next_rank, logger):
|
||||
dtype = torch.float32
|
||||
device = get_current_device()
|
||||
tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
|
||||
grad_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
|
||||
tensor = torch.randn(tensor_shape, dtype=dtype, device=device)
|
||||
dist.all_reduce(tensor)
|
||||
grad = torch.randn(grad_shape, dtype=dtype, device=device)
|
||||
dist.all_reduce(grad)
|
||||
check_forward(tensor, rank, logger)
|
||||
check_backward(grad, rank, logger)
|
||||
check_forward_backward(tensor, grad, rank, logger)
|
||||
|
||||
|
||||
def run_check(rank, world_size, port):
|
||||
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
logger = get_dist_logger()
|
||||
rank = gpc.get_global_rank()
|
||||
prev_rank = gpc.get_prev_global_rank(ParallelMode.PIPELINE)
|
||||
next_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE)
|
||||
logger.info('Rank {0}: prev rank {1}, next rank {2}'.format(rank, prev_rank, next_rank))
|
||||
logger.info('Distributed environment is initialized.')
|
||||
|
||||
check_comm(world_size, rank, prev_rank, next_rank, logger)
|
||||
gpc.destroy()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_p2p():
|
||||
world_size = 4
|
||||
spawn(run_check, world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_p2p()
|
@@ -0,0 +1,87 @@
|
||||
# referenced from Megatron and used to testify communication
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import CIFAR10
|
||||
from torchvision.models import resnet18
|
||||
|
||||
import colossalai
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils import get_dataloader, print_rank_0
|
||||
|
||||
BATCH_SIZE = 8
|
||||
|
||||
CONFIG = dict(NUM_MICRO_BATCHES=2, parallel=dict(pipeline=dict(size=2), tensor=dict(size=1, mode=None)))
|
||||
|
||||
|
||||
def run_schedule(rank, world_size, port):
|
||||
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
|
||||
# build model
|
||||
model = resnet18(num_classes=10)
|
||||
|
||||
if gpc.get_local_rank(ParallelMode.PIPELINE) == 0:
|
||||
model = nn.Sequential(model.conv1, model.bn1, model.relu, model.maxpool, model.layer1, model.layer2)
|
||||
elif gpc.get_local_rank(ParallelMode.PIPELINE) == 1:
|
||||
|
||||
class Flatten(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
return torch.flatten(x, 1)
|
||||
|
||||
model = nn.Sequential(model.layer3, model.layer4, model.avgpool, Flatten(), model.fc)
|
||||
|
||||
print_rank_0('model is created')
|
||||
|
||||
train_dataset = CIFAR10(root=Path(os.environ['DATA']),
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]),
|
||||
]))
|
||||
|
||||
train_dataloader = get_dataloader(
|
||||
dataset=train_dataset,
|
||||
shuffle=True,
|
||||
add_sampler=True,
|
||||
batch_size=BATCH_SIZE,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
# build criterion
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
|
||||
# optimizer
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=0)
|
||||
|
||||
# initialize
|
||||
engine, train_dataloader, _, _ = colossalai.initialize(model, optimizer, criterion, train_dataloader)
|
||||
|
||||
# build pipeline schedule
|
||||
schedule = engine.schedule
|
||||
|
||||
# run schedule
|
||||
data_iter = iter(train_dataloader)
|
||||
schedule.forward_backward_step(engine, data_iter)
|
||||
|
||||
gpc.destroy()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_pipeline_schedule():
|
||||
world_size = 2
|
||||
spawn(run_schedule, world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_pipeline_schedule()
|
@@ -0,0 +1,59 @@
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
import colossalai
|
||||
from colossalai.amp.amp_type import AMP_TYPE
|
||||
from colossalai.legacy.trainer import Trainer
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils import MultiTimer
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
|
||||
BATCH_SIZE = 4
|
||||
IMG_SIZE = 32
|
||||
NUM_EPOCHS = 200
|
||||
|
||||
CONFIG = dict(fp16=dict(mode=AMP_TYPE.TORCH))
|
||||
|
||||
|
||||
@parameterize('model_name', ['repeated_computed_layers', 'resnet18', 'nested_model'])
|
||||
def run_trainer(model_name):
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
model = model_builder()
|
||||
optimizer = optimizer_class(model.parameters(), lr=1e-3)
|
||||
engine, train_dataloader, *_ = colossalai.initialize(model=model,
|
||||
optimizer=optimizer,
|
||||
criterion=criterion,
|
||||
train_dataloader=train_dataloader)
|
||||
|
||||
logger = get_dist_logger()
|
||||
logger.info("engine is built", ranks=[0])
|
||||
|
||||
timer = MultiTimer()
|
||||
trainer = Trainer(engine=engine, logger=logger, timer=timer)
|
||||
logger.info("trainer is built", ranks=[0])
|
||||
|
||||
logger.info("start training", ranks=[0])
|
||||
trainer.fit(train_dataloader=train_dataloader,
|
||||
test_dataloader=test_dataloader,
|
||||
epochs=NUM_EPOCHS,
|
||||
max_steps=3,
|
||||
display_progress=True,
|
||||
test_interval=5)
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_trainer_no_pipeline():
|
||||
world_size = 4
|
||||
spawn(run_dist, world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_trainer_no_pipeline()
|
@@ -0,0 +1,96 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.optim import Adam
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import CIFAR10
|
||||
from torchvision.models import resnet18
|
||||
|
||||
import colossalai
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.legacy.trainer import Trainer
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils import MultiTimer, get_dataloader
|
||||
|
||||
BATCH_SIZE = 4
|
||||
IMG_SIZE = 32
|
||||
NUM_EPOCHS = 200
|
||||
|
||||
CONFIG = dict(
|
||||
NUM_MICRO_BATCHES=2,
|
||||
parallel=dict(pipeline=2),
|
||||
)
|
||||
|
||||
|
||||
def run_trainer_with_pipeline(rank, world_size, port):
|
||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
|
||||
# build model
|
||||
model = resnet18(num_classes=10)
|
||||
|
||||
if gpc.get_local_rank(ParallelMode.PIPELINE) == 0:
|
||||
model = nn.Sequential(model.conv1, model.bn1, model.relu, model.maxpool, model.layer1, model.layer2)
|
||||
elif gpc.get_local_rank(ParallelMode.PIPELINE) == 1:
|
||||
|
||||
class Flatten(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
return torch.flatten(x, 1)
|
||||
|
||||
model = nn.Sequential(model.layer3, model.layer4, model.avgpool, Flatten(), model.fc)
|
||||
|
||||
# build dataloaders
|
||||
train_dataset = CIFAR10(root=Path(os.environ['DATA']),
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.Resize(size=(IMG_SIZE, IMG_SIZE)),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
|
||||
]))
|
||||
|
||||
train_dataloader = get_dataloader(dataset=train_dataset,
|
||||
shuffle=True,
|
||||
batch_size=BATCH_SIZE,
|
||||
pin_memory=True,
|
||||
drop_last=True)
|
||||
|
||||
# build optimizer
|
||||
optimizer = Adam(model.parameters(), lr=0.001)
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
|
||||
engine, train_dataloader, *args = colossalai.initialize(model=model,
|
||||
optimizer=optimizer,
|
||||
criterion=criterion,
|
||||
train_dataloader=train_dataloader)
|
||||
|
||||
logger = get_dist_logger()
|
||||
logger.info("engine is built", ranks=[0])
|
||||
timer = MultiTimer()
|
||||
trainer = Trainer(engine=engine, logger=logger, timer=timer)
|
||||
logger.info("trainer is built", ranks=[0])
|
||||
|
||||
logger.info("start training", ranks=[0])
|
||||
|
||||
trainer.fit(train_dataloader=train_dataloader,
|
||||
epochs=NUM_EPOCHS,
|
||||
max_steps=3,
|
||||
display_progress=True,
|
||||
test_interval=5)
|
||||
gpc.destroy()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_trainer_with_pipeline():
|
||||
world_size = 4
|
||||
spawn(run_trainer_with_pipeline, world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_trainer_with_pipeline()
|
Reference in New Issue
Block a user