mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2026-01-26 13:24:33 +00:00
[zero] refactor model data tracing (#522)
This commit is contained in:
@@ -22,6 +22,7 @@ class ModelDataTracer(metaclass=SingletonMeta):
|
||||
|
||||
def __init__(self) -> None:
|
||||
self._cuda_usage = 0
|
||||
self._cpu_usage = 0
|
||||
self._start_flag = False
|
||||
|
||||
def start(self) -> None:
|
||||
@@ -30,22 +31,33 @@ class ModelDataTracer(metaclass=SingletonMeta):
|
||||
def close(self) -> None:
|
||||
self._start_flag = False
|
||||
|
||||
def add_tensor(self, t: torch.Tensor) -> None:
|
||||
def add_tensor(self, t: Union[torch.Tensor, ShardedTensor]) -> None:
|
||||
if not self._start_flag:
|
||||
return
|
||||
assert isinstance(t, torch.Tensor), f"ModelDataTracer add_tensor() should accept a torch.Tensor"
|
||||
mem_use = _col_tensor_mem_usage(t)
|
||||
self._cuda_usage += mem_use
|
||||
t_payload = t.payload if isinstance(t, ShardedTensor) else t
|
||||
mem_use = _col_tensor_mem_usage(t_payload)
|
||||
if t_payload.device.type == 'cuda':
|
||||
self._cuda_usage += mem_use
|
||||
elif t_payload.device.type == 'cpu':
|
||||
self._cpu_usage += mem_use
|
||||
else:
|
||||
raise TypeError
|
||||
|
||||
def delete_tensor(self, t: torch.Tensor) -> None:
|
||||
def delete_tensor(self, t: Union[torch.Tensor, ShardedTensor]) -> None:
|
||||
if not self._start_flag:
|
||||
return
|
||||
assert isinstance(t, torch.Tensor), f"ModelDataTracer delete_tensor() should accept a torch.Tensor"
|
||||
mem_use = _col_tensor_mem_usage(t)
|
||||
self._cuda_usage -= mem_use
|
||||
t_payload = t.payload if isinstance(t, ShardedTensor) else t
|
||||
mem_use = _col_tensor_mem_usage(t_payload)
|
||||
if t_payload.device.type == 'cuda':
|
||||
self._cuda_usage -= mem_use
|
||||
elif t_payload.device.type == 'cpu':
|
||||
self._cpu_usage -= mem_use
|
||||
else:
|
||||
raise TypeError
|
||||
|
||||
def clear(self) -> None:
|
||||
self._cuda_usage = 0
|
||||
self._cpu_usage = 0
|
||||
|
||||
@property
|
||||
def cpu_usage(self):
|
||||
|
||||
@@ -3,7 +3,7 @@ from colossalai.utils import get_current_device
|
||||
from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor
|
||||
from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER
|
||||
|
||||
from typing import Union, Optional
|
||||
from typing import Union
|
||||
|
||||
_GLOBAL_CUDA_MEM_FRACTION = 1.0
|
||||
|
||||
@@ -52,11 +52,9 @@ def colo_model_data_tensor_move(src_t: Union[ShardedTensor, torch.Tensor], tgt_t
|
||||
tgt_t_payload = tgt_t.data
|
||||
tgt_dev = tgt_t_payload.device
|
||||
|
||||
if src_dev.type == 'cuda' and tgt_dev.type == 'cpu':
|
||||
GLOBAL_MODEL_DATA_TRACER.delete_tensor(src_t_payload)
|
||||
elif src_dev.type == 'cpu' and tgt_dev.type == 'cuda':
|
||||
GLOBAL_MODEL_DATA_TRACER.add_tensor(tgt_t_payload)
|
||||
GLOBAL_MODEL_DATA_TRACER.delete_tensor(src_t_payload)
|
||||
tgt_t_payload.copy_(src_t_payload)
|
||||
GLOBAL_MODEL_DATA_TRACER.add_tensor(tgt_t_payload)
|
||||
|
||||
# remove payload of src_t
|
||||
if isinstance(src_t, ShardedTensor):
|
||||
@@ -65,7 +63,9 @@ def colo_model_data_tensor_move(src_t: Union[ShardedTensor, torch.Tensor], tgt_t
|
||||
src_t.data = torch.tensor([], device=src_dev, dtype=src_t_payload.dtype)
|
||||
|
||||
|
||||
def colo_model_data_tensor_move_inline(t: Union[ShardedTensor, torch.Tensor], target_device: torch.device) -> None:
|
||||
def colo_model_data_tensor_move_inline(t: Union[ShardedTensor, torch.Tensor],
|
||||
target_device: torch.device,
|
||||
use_tracer: bool = True) -> None:
|
||||
"""
|
||||
move a tensor to the target_device
|
||||
Args:
|
||||
@@ -84,13 +84,11 @@ def colo_model_data_tensor_move_inline(t: Union[ShardedTensor, torch.Tensor], ta
|
||||
# deal with torch.device('cpu') and torch.device('cpu:0)
|
||||
if t_payload.device.type == target_device.type:
|
||||
return
|
||||
|
||||
if target_device.type == 'cuda':
|
||||
GLOBAL_MODEL_DATA_TRACER.add_tensor(t_payload)
|
||||
elif target_device.type == 'cpu':
|
||||
if use_tracer:
|
||||
GLOBAL_MODEL_DATA_TRACER.delete_tensor(t_payload)
|
||||
|
||||
t_payload.data = t_payload.data.to(target_device)
|
||||
if use_tracer:
|
||||
GLOBAL_MODEL_DATA_TRACER.add_tensor(t_payload)
|
||||
|
||||
|
||||
def colo_model_data_move_to_cpu(t: Union[ShardedTensor, torch.Tensor]) -> None:
|
||||
@@ -115,3 +113,4 @@ def colo_model_data_move_to_cpu(t: Union[ShardedTensor, torch.Tensor]) -> None:
|
||||
# TODO() optimize the tensor moving with non-blocking
|
||||
GLOBAL_MODEL_DATA_TRACER.delete_tensor(t_payload)
|
||||
t_payload.data = t_payload.data.cpu()
|
||||
GLOBAL_MODEL_DATA_TRACER.add_tensor(t_payload)
|
||||
|
||||
@@ -177,13 +177,11 @@ class ZeroInitContext(InsertPostInitMethodToModuleSubClasses):
|
||||
|
||||
self.initialized_param_list.append(param)
|
||||
|
||||
GLOBAL_MODEL_DATA_TRACER.add_tensor(param.col_attr.sharded_data_tensor)
|
||||
|
||||
if self.shard_param:
|
||||
self.shard_strategy.shard([param.col_attr.sharded_data_tensor], self.dp_process_group)
|
||||
if param.col_attr.sharded_data_tensor.device.type == 'cuda':
|
||||
GLOBAL_MODEL_DATA_TRACER.add_tensor(param.col_attr.sharded_data_tensor.payload)
|
||||
# if param.col_attr.grad and self.shard_grad:
|
||||
# self.shard_strategy.shard([param.col_attr._grad_sharded_tensor], self.dp_process_group)
|
||||
# GLOBAL_MODEL_DATA_TRACER.add_tensor(param.col_attr._grad_sharded_tensor.payload)
|
||||
|
||||
# We must cast buffers
|
||||
# If we use BN, buffers may be on CPU and Float
|
||||
# We must cast them
|
||||
|
||||
@@ -7,6 +7,7 @@ from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor
|
||||
from torch._utils import _flatten_dense_tensors as flatten
|
||||
|
||||
from .tensor_shard_strategy import TensorShardStrategy
|
||||
from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER
|
||||
|
||||
|
||||
class BucketTensorShardStrategy(TensorShardStrategy):
|
||||
@@ -17,6 +18,9 @@ class BucketTensorShardStrategy(TensorShardStrategy):
|
||||
"""
|
||||
|
||||
def gather(self, tensor_list: List[ShardedTensor], process_group: Optional[dist.ProcessGroup] = None):
|
||||
for t in tensor_list:
|
||||
GLOBAL_MODEL_DATA_TRACER.delete_tensor(t)
|
||||
|
||||
tensor_list: List[ShardedTensor] = [t for t in tensor_list if t.is_sharded]
|
||||
if len(tensor_list) == 0:
|
||||
return
|
||||
@@ -46,3 +50,6 @@ class BucketTensorShardStrategy(TensorShardStrategy):
|
||||
t.reset_payload(gathered_payload)
|
||||
t.is_sharded = False
|
||||
offset += tensor_numels[i]
|
||||
|
||||
for t in tensor_list:
|
||||
GLOBAL_MODEL_DATA_TRACER.add_tensor(t)
|
||||
|
||||
@@ -3,13 +3,16 @@ from typing import List, Optional
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from colossalai.utils import get_current_device
|
||||
from colossalai.utils.memory_utils.utils import colo_model_data_tensor_move, colo_model_data_tensor_move_inline
|
||||
from colossalai.zero.shard_utils import BaseShardStrategy
|
||||
from colossalai.zero.shard_utils.commons import get_shard
|
||||
from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor
|
||||
from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER
|
||||
|
||||
|
||||
class TensorShardStrategy(BaseShardStrategy):
|
||||
"""A naive implementation which shard each tensor evenly over all ranks
|
||||
"""
|
||||
A naive implementation which shard each tensor evenly over all ranks
|
||||
"""
|
||||
|
||||
def shard(self, tensor_list: List[ShardedTensor], process_group: Optional[dist.ProcessGroup] = None):
|
||||
@@ -21,13 +24,22 @@ class TensorShardStrategy(BaseShardStrategy):
|
||||
self._gather_tensor(t, process_group)
|
||||
|
||||
def _shard_tensor(self, t: ShardedTensor, process_group: Optional[dist.ProcessGroup] = None):
|
||||
""" Shard tensor among processes.
|
||||
|
||||
Args:
|
||||
t (ShardedTensor): a tensor to be sharded.
|
||||
process_group (Optional[dist.ProcessGroup], optional): the process group among which tensor shards.
|
||||
Defaults to None.
|
||||
"""
|
||||
if t.is_sharded:
|
||||
return
|
||||
if t.payload.device.type == 'cuda':
|
||||
assert t.payload.device.index == get_current_device(), f"shard tensor on cuda device index {t.payload.device.index},"\
|
||||
f" but current cuda device is {get_current_device()}"
|
||||
GLOBAL_MODEL_DATA_TRACER.delete_tensor(t.payload)
|
||||
sharded_payload, _ = get_shard(t.payload, dist.get_rank(process_group), dist.get_world_size(process_group))
|
||||
t.reset_payload(sharded_payload)
|
||||
GLOBAL_MODEL_DATA_TRACER.add_tensor(t.payload)
|
||||
t.is_sharded = True
|
||||
|
||||
def _gather_tensor(self, t: ShardedTensor, process_group: Optional[dist.ProcessGroup] = None):
|
||||
@@ -44,8 +56,10 @@ class TensorShardStrategy(BaseShardStrategy):
|
||||
else:
|
||||
buffer_list.append(torch.zeros(payload_numel, dtype=t.dtype, device=get_current_device()))
|
||||
|
||||
GLOBAL_MODEL_DATA_TRACER.delete_tensor(t.payload)
|
||||
dist.all_gather(buffer_list, buffer_list[rank], group=process_group, async_op=False)
|
||||
gathered_payload = torch.narrow(torch.cat(buffer_list), 0, 0, t.origin_numel).reshape(t.origin_shape)
|
||||
t.reset_payload(gathered_payload)
|
||||
t.to(target_device)
|
||||
colo_model_data_tensor_move_inline(t, target_device, use_tracer=False)
|
||||
GLOBAL_MODEL_DATA_TRACER.delete_tensor(t.payload)
|
||||
t.is_sharded = False
|
||||
|
||||
@@ -56,7 +56,10 @@ class ShardedTensor(object):
|
||||
return self._origin_dtype
|
||||
|
||||
def to(self, device: torch.device):
|
||||
self._payload = self._payload.to(device)
|
||||
raise RuntimeError("Use colo_model_tensor_move install of call .to() on ShardedTensor")
|
||||
|
||||
def to_(self, device: torch.device):
|
||||
raise RuntimeError("Use colo_model_tensor_move install of call .to_() on ShardedTensor")
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
|
||||
Reference in New Issue
Block a user