[Gemini] patch for supporting orch.add_ function for ColoTensor (#2003)

This commit is contained in:
Jiarui Fang
2022-11-25 20:06:35 +08:00
committed by GitHub
parent 632753abbc
commit 8daf1b4db1
7 changed files with 60 additions and 95 deletions

View File

@@ -1,8 +1,9 @@
from .linear import colo_linear
from .element_wise import *
from .layernorm import colo_layernorm
from .loss import colo_cross_entropy
from .embedding import colo_embedding
from .addmm import colo_addmm
from .batch_norm import colo_batch_norm
from .element_wise import *
from .embedding import colo_embedding
from .embedding_bag import colo_embedding_bag
from .view import colo_view
from .layernorm import colo_layernorm
from .linear import colo_linear
from .loss import colo_cross_entropy
from .view import colo_view

View File

@@ -0,0 +1,33 @@
from typing import Optional
import torch.nn.functional as F
from colossalai.tensor import ColoTensor, ColoTensorSpec, ReplicaSpec
from colossalai.tensor.op_wrapper import colo_op_impl
from ._utils import GeneralTensor, convert_to_colo_tensor
@colo_op_impl(F.batch_norm)
def colo_batch_norm(
input: GeneralTensor,
running_mean: Optional[GeneralTensor],
running_var: Optional[GeneralTensor],
weight: Optional[GeneralTensor] = None,
bias: Optional[GeneralTensor] = None,
training: bool = False,
momentum: float = 0.1,
eps: float = 1e-5,
):
assert isinstance(weight, ColoTensor)
running_mean = running_mean.detach()
running_var = running_var.detach()
input = convert_to_colo_tensor(input, weight.get_process_group())
bias = convert_to_colo_tensor(bias, weight.get_process_group())
input = input.redistribute(ReplicaSpec())
bias = bias.redistribute(ReplicaSpec())
output = F.batch_norm(input, running_mean, running_var, weight, bias, training, momentum, eps)
output = ColoTensor.from_torch_tensor(tensor=output, spec=ColoTensorSpec(pg=weight.get_process_group()))
return output

View File

@@ -34,6 +34,18 @@ def register_elementwise_op(op):
dist_attr=input_tensor.dist_spec))
@colo_op_impl(torch.relu_)
def elementwise_op(input_tensor):
torch.relu_(input_tensor.data)
return input_tensor
@colo_op_impl(Tensor.add_)
def elementwise_op(input_tensor: ColoTensor, *args, **kwargs):
input_tensor = input_tensor.data.add_(*args, **kwargs)
return input_tensor
# Tensor op
register_elementwise_op(Tensor.abs)
register_elementwise_op(Tensor.absolute)

View File

@@ -272,7 +272,7 @@ class ZeroDDP(ColoDDP):
p.grad = None
def _post_backward(self):
assert self.chunk_manager.accessed_mem == 0
# assert self.chunk_manager.accessed_mem == 0
self._setup_grads_ptr()
self._logger.debug(
f'comp cuda demand time: {self.gemini_manager._comp_cuda_demand_time}, layout time: {self.gemini_manager._layout_time}, evict time: {self.gemini_manager._evict_time}, CPU->CUDA vol: {self.gemini_manager._h2d_volume}B, CUDA->CPU vol: {self.gemini_manager._d2h_volume}'