mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-28 04:55:25 +00:00
[shardformer] Sequence Parallelism Optimization (#5533)
* sequence parallel optimization * validate sequence parallel in llama (code to be polished) * shardformer api writing * integrate sequence parallel in ShardFormer * fix pp bugs and sp bugs for LlaMa model * integrating ring-based sequence parallelism into ShardFormer * [sequence parallelism]: Add fused megatron function * integrating ring-based sequence parallelism into ShardFormer --------- Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn> * fix bugs when useing sp and flashattention together * fix operation function name * support flash attention for ulysses-style sp * clarify sp process group * fix compatibility bugs in moe plugin * fix fused linear bugs * fix linear layer test * support gpt model all-to-all sp * modify shard data dimension (meant to be dim=-1) * support megtron-style sp and distributed attn for llama model * [shardformer] add megatron sp to llama * support llama7B 128k with distributed attention * [shardformer] robustness enhancement * add block attn * sp mode 1: keep input as a complete sequence * fix sp compatability * finish sp mode 3 support for gpt * using all_to_all_single when batch size is 1 * support mode 2 sp in gpt2 (#5) * [shardformer] add megatron sp to llama * support llama7B 128k with distributed attention * [shardformer] robustness enhancement * add block attn * sp mode 1: keep input as a complete sequence * fix sp compatability * refactor ring implementation * support mode 2 sp in gpt2 * polish code * enable distributed attn mask when using sp mode 2 and 3 in llama * automatically enable flash attn when using sp mode 2 and 3 in llama * inplace attn mask * add zero2 support for sequence parallel * polish code * fix bugs * fix gemini checkpoint io * loose tensor checking atol and rtol * add comment * fix llama layernorm grad * fix zero grad * fix zero grad * fix conflict * update split and gather auto grad func * sequence parallel: inside text split (#6) * polish code (part 1) * polish code (part 2) * polish code (part 2.5) * polish code (part 3) * sequence parallel: inside text split * miscellaneous minor fixes * polish code * fix ulysses style ZeRO * sequence parallel: inside text split * miscellaneous minor fixes * disaggregate sp group and dp group for sp * fix llama and gpt sp * polish code * move ulysses grad sync to ddp (#9) * remove zero_stage and unbind the grad sync for alltoall sp * add 2d group creation test * move ulysses grad sync to ddp * add 2d group creation test * remove useless code * change shard config not to enable sp when enable_all_optimizations * add sp warnings for several model * remove useless code --------- Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
This commit is contained in:
@@ -1,3 +1,4 @@
|
||||
import warnings
|
||||
from functools import partial
|
||||
from typing import Callable, Dict, List
|
||||
|
||||
@@ -55,8 +56,18 @@ class BloomPolicy(Policy):
|
||||
norm_cls = col_nn.FusedLayerNorm
|
||||
else:
|
||||
norm_cls = col_nn.LayerNorm
|
||||
use_sequence_parallel = self.shard_config.enable_sequence_parallelism
|
||||
|
||||
sp_mode = self.shard_config.sequence_parallelism_mode if self.shard_config.enable_sequence_parallelism else None
|
||||
assert sp_mode != "all_to_all", "all_to_all sequence parallelism is not supported for BLOOM"
|
||||
if sp_mode == "ring":
|
||||
warnings.warn(
|
||||
f"For BLOOM, sequence parallelism is currently not support mode {sp_mode}, will set to be split_gather"
|
||||
)
|
||||
sp_mode = "split_gather"
|
||||
|
||||
overlap = self.shard_config.enable_sequence_overlap
|
||||
sp_partial_derived = sp_mode == "split_gather"
|
||||
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
policy[BloomBlock] = ModulePolicyDescription(
|
||||
attribute_replacement={
|
||||
@@ -70,12 +81,12 @@ class BloomPolicy(Policy):
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attention.query_key_value",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
kwargs={"seq_parallel": use_sequence_parallel, "overlap": overlap},
|
||||
kwargs={"seq_parallel_mode": sp_mode, "overlap": overlap},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attention.dense",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
kwargs={"seq_parallel": use_sequence_parallel},
|
||||
kwargs={"seq_parallel_mode": sp_mode},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attention.attention_dropout",
|
||||
@@ -84,12 +95,12 @@ class BloomPolicy(Policy):
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.dense_h_to_4h",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
kwargs={"seq_parallel": use_sequence_parallel, "overlap": overlap},
|
||||
kwargs={"seq_parallel_mode": sp_mode, "overlap": overlap},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.dense_4h_to_h",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
kwargs={"seq_parallel": use_sequence_parallel},
|
||||
kwargs={"seq_parallel_mode": sp_mode},
|
||||
),
|
||||
],
|
||||
)
|
||||
@@ -132,19 +143,19 @@ class BloomPolicy(Policy):
|
||||
SubModuleReplacementDescription(
|
||||
suffix="input_layernorm",
|
||||
target_module=norm_cls,
|
||||
kwargs={"sp_partial_derived": use_sequence_parallel},
|
||||
kwargs={"sp_partial_derived": sp_partial_derived},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="post_attention_layernorm",
|
||||
target_module=norm_cls,
|
||||
kwargs={"sp_partial_derived": use_sequence_parallel},
|
||||
kwargs={"sp_partial_derived": sp_partial_derived},
|
||||
),
|
||||
],
|
||||
policy=policy,
|
||||
target_key=BloomBlock,
|
||||
)
|
||||
|
||||
if use_sequence_parallel:
|
||||
if sp_mode == "split_gather":
|
||||
self.append_or_create_method_replacement(
|
||||
description={"forward": get_bloom_sequence_parallel_forward_fn(self.shard_config)},
|
||||
policy=policy,
|
||||
|
Reference in New Issue
Block a user