mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-17 23:18:36 +00:00
[shardformer] Sequence Parallelism Optimization (#5533)
* sequence parallel optimization * validate sequence parallel in llama (code to be polished) * shardformer api writing * integrate sequence parallel in ShardFormer * fix pp bugs and sp bugs for LlaMa model * integrating ring-based sequence parallelism into ShardFormer * [sequence parallelism]: Add fused megatron function * integrating ring-based sequence parallelism into ShardFormer --------- Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn> * fix bugs when useing sp and flashattention together * fix operation function name * support flash attention for ulysses-style sp * clarify sp process group * fix compatibility bugs in moe plugin * fix fused linear bugs * fix linear layer test * support gpt model all-to-all sp * modify shard data dimension (meant to be dim=-1) * support megtron-style sp and distributed attn for llama model * [shardformer] add megatron sp to llama * support llama7B 128k with distributed attention * [shardformer] robustness enhancement * add block attn * sp mode 1: keep input as a complete sequence * fix sp compatability * finish sp mode 3 support for gpt * using all_to_all_single when batch size is 1 * support mode 2 sp in gpt2 (#5) * [shardformer] add megatron sp to llama * support llama7B 128k with distributed attention * [shardformer] robustness enhancement * add block attn * sp mode 1: keep input as a complete sequence * fix sp compatability * refactor ring implementation * support mode 2 sp in gpt2 * polish code * enable distributed attn mask when using sp mode 2 and 3 in llama * automatically enable flash attn when using sp mode 2 and 3 in llama * inplace attn mask * add zero2 support for sequence parallel * polish code * fix bugs * fix gemini checkpoint io * loose tensor checking atol and rtol * add comment * fix llama layernorm grad * fix zero grad * fix zero grad * fix conflict * update split and gather auto grad func * sequence parallel: inside text split (#6) * polish code (part 1) * polish code (part 2) * polish code (part 2.5) * polish code (part 3) * sequence parallel: inside text split * miscellaneous minor fixes * polish code * fix ulysses style ZeRO * sequence parallel: inside text split * miscellaneous minor fixes * disaggregate sp group and dp group for sp * fix llama and gpt sp * polish code * move ulysses grad sync to ddp (#9) * remove zero_stage and unbind the grad sync for alltoall sp * add 2d group creation test * move ulysses grad sync to ddp * add 2d group creation test * remove useless code * change shard config not to enable sp when enable_all_optimizations * add sp warnings for several model * remove useless code --------- Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
This commit is contained in:
@@ -84,6 +84,30 @@ def check_process_group_mesh_with_cases():
|
||||
2: [2],
|
||||
3: [3],
|
||||
}
|
||||
TPxPP_RANKS_IN_GROUP = {
|
||||
0: [0, 1, 2, 3],
|
||||
1: [0, 1, 2, 3],
|
||||
2: [0, 1, 2, 3],
|
||||
3: [0, 1, 2, 3],
|
||||
}
|
||||
DPxTP_RANKS_IN_GROUP = {
|
||||
0: [0, 1],
|
||||
1: [0, 1],
|
||||
2: [2, 3],
|
||||
3: [2, 3],
|
||||
}
|
||||
TPxPP_PARTIAL_INDICES = {
|
||||
0: [[0, 1], [0]],
|
||||
1: [[1], [0, 1]],
|
||||
2: [[0], [0, 1]],
|
||||
3: [[0, 1], [1]],
|
||||
}
|
||||
TPxPP_RANKS_IN_GROUP_PARTIAL = {
|
||||
0: [0, 1],
|
||||
1: [1, 3],
|
||||
2: [0, 2],
|
||||
3: [2, 3],
|
||||
}
|
||||
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE, TP_SIZE)
|
||||
|
||||
@@ -107,6 +131,12 @@ def check_process_group_mesh_with_cases():
|
||||
assert pg_mesh.get_ranks_in_group(pp_group) == PP_RANKS_IN_GROUP[rank]
|
||||
dp_group = pg_mesh.get_group_along_axis(DP_DIM)
|
||||
assert pg_mesh.get_ranks_in_group(dp_group) == DP_RANKS_IN_GROUP[rank]
|
||||
dpxtp_group = pg_mesh.create_group_along_axis([DP_DIM, TP_DIM])
|
||||
assert pg_mesh.get_ranks_in_group(dpxtp_group) == DPxTP_RANKS_IN_GROUP[rank]
|
||||
tpxpp_group = pg_mesh.create_group_along_axis([TP_DIM, PP_DIM])
|
||||
assert pg_mesh.get_ranks_in_group(tpxpp_group) == TPxPP_RANKS_IN_GROUP[rank]
|
||||
tpxpp_group_partial = pg_mesh.create_group_along_axis([TP_DIM, PP_DIM], TPxPP_PARTIAL_INDICES[rank])
|
||||
assert pg_mesh.get_ranks_in_group(tpxpp_group_partial) == TPxPP_RANKS_IN_GROUP_PARTIAL[rank]
|
||||
|
||||
# check prev rank
|
||||
if RANK_TO_COORDINATE[rank][TP_DIM] != 0:
|
||||
|
Reference in New Issue
Block a user