[gemini] fixes for benchmarking (#5847)

* [gemini] fix missing return

* [gemini] fix missing arg pass

* [gemini] use gather tensor instead of list

* [test] enable flash attention for benchmark by default

* [test] enable flash attention for benchmark by default

---------

Co-authored-by: genghaozhe <939857490@qq.com>
This commit is contained in:
botbw
2024-06-26 15:52:09 +08:00
committed by GitHub
parent 2a25a2aff7
commit 8e718a1421
5 changed files with 27 additions and 15 deletions

View File

@@ -387,6 +387,7 @@ class GeminiDDP(ModelWrapper):
p: nn.Parameter,
async_reduce_stream: Optional[torch.cuda.Stream] = None,
):
async_reduce_scatter = async_reduce_stream is not None
setattr(p, "_gemini_reduced", True)
empty_grad = torch.empty_like(grad)
free_storage(empty_grad)
@@ -426,7 +427,7 @@ class GeminiDDP(ModelWrapper):
async_reduce_stream.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(async_reduce_stream):
reduced = chunk_manager.reduce_chunk(grad_chunk, async_op=(async_reduce_stream is not None))
reduced = chunk_manager.reduce_chunk(grad_chunk, async_op=async_reduce_scatter)
if reduced:
grad_chunk.wait_async_reduce()
if not chunk_manager.reuse_fp16_chunk:
@@ -447,9 +448,13 @@ class GeminiDDP(ModelWrapper):
# record l2 norm for gradient clipping. flag is bound to fp16 chunk
if chunk.l2_norm_flag:
grad_chunk.set_l2_norm()
chunk_manager.move_chunk(grad_chunk, grads_device[p], force_copy=True)
chunk_manager.move_chunk(
grad_chunk, grads_device[p], force_copy=True, async_move=async_reduce_scatter
)
if not (master_weights) or (enable_gradient_accumulation):
chunk_manager.move_chunk(chunk, grads_device[p], force_copy=True)
chunk_manager.move_chunk(
chunk, grads_device[p], force_copy=True, async_move=async_reduce_scatter
)
return empty_grad
def zero_grad(self, set_to_none: bool = False) -> None: