[Shardformer] Merge flash attention branch to pipeline branch (#4362)

* [shardformer] supported flash attention test dependency (#4158)

* [shardformer] fix flash attention utils test (#4180)

* [shardformer] opt support flash attention (#4163)

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] move to modeling

* [shardformer] move to modeling

* [shardformer] add performance benchmark of shardformer (#4175)

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] benchmark fix

* [shardformer] benchmark fix

* [shardformer] llama support flash attention (#4185)

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] move to modeling

* [shardformer] move to modeling

* [shardformer] llama support flash attention

* [shardformer] llama support flash attention

* [shardformer] Move the import statement for xformer outside the forward function.

* [shardformer] gpt2 support flash attention. (#4191)

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] move to modeling

* [shardformer] move to modeling

* [shardformer] gpt2 support flash attention

* [shardformer] gpt2 support flash attention

* [shardformer] gpt2 support flash attention

* [shardformer] bloom support flash attention (#4188)

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] move to modeling

* [shardformer] move to modeling

* [shardformer] bloom suport flash attention

* [shardformer] add assert to sequence length

* [shardformer] fix

* [shardformer] fix

* [shardformer] fix

* [shardformer] bert support flash attention. (#4206)

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] move to modeling

* [shardformer] move to modeling

* [shardformer] bert support flash attention

* [shardformer] t5 support flash attention. (#4216)

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] move to modeling

* [shardformer] move to modeling

* [shardformer] t5 support flash attention

* [shardformer] t5 support flash attention

* fix typo

* fix typo

* fix typo

* fix typo

* fix typo

* fix typo

* [shardformer] support 'paddedcausal'  type of attention mask in Coloattention. (#4215)

* added padded causal attn mask type for ColoAttention

* [shardformer]t5 flash attention fix (#4239)

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] move to modeling

* [shardformer] move to modeling

* [shardformer] t5 flash attention fix

* [shardformer] update gpt2 to use coloattention. (#4234)

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] move to modeling

* [shardformer] move to modeling

* [shardformer] update gpt2 to use coloattention

* [shardformer] update gpt2 to use coloattention

* [shardformer] update gpt2 to use coloattention

* [shardformer] update gpt2 to use coloattention

* [shardformer] update gpt2

* [shardformer] update opt and llama to use coloattention. (#4226)

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] move to modeling

* [shardformer] move to modeling

* update opt to use coloattention

* [shardformer]update opt to use coloattention

* [shardformer]update opt to use coloattention

* [shardformer]update opt to use coloattention

* [shardformer]update opt to use coloattention

* [shardformer]update opt to use coloattention

* [shardformer]update opt to use coloattention

* [shardformer]update opt

* [shardformer] shardformer support jit fused operator. (#4236)

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] opt support flash attention

* [shardformer] move to modeling

* [shardformer] move to modeling

* [shardformer] bloom support jit fused operator

* [shardformer] bloom support jit fused operator

* [shardformer] bloom support jit fused operator

* [shardformer] t5 support jit fused operator

* [shardformer] t5 support jit fused operator

* [shardformer] t5 support jit fused operator

* [shardformer] add roadmap of flash attention

* [shardformer] add roadmap of flash attention

* [shardformer] add roadmap of flash attention

* [shardformer] add type hint to 'self' param of forward

* [shardformer] merge feature/shardformer-models branch to feature/flash-attention-shardformer branch. (#4290)

* Feature/vit support (#4182)

* [shardformer] added tests

* [shardformer] vit test finish and support

* fix attention dropout

* [shardformer] support SAM (#4231)

* 1.support sam 2.add fused qkv for nn.Linear

* update utils support set element in list

* overtwrite SamVisionAttention foward to use DropoutForParallelInput

* remove unused code

* [shardformer] support whisper (#4212)

* support whisper

* fix bug in vocabembedding

* support downstream model of whisper

* update readme

* Feature/chatglm (#4240)

* [shardformer] added tests

* [shardformer] vit test finish and support

* [shardformer] chatglm ready

* import chatglm

* [shardformer] add test kit in model zoo for chatglm

* [sharformer] add first version of policy of chatglm

* [shardformer] polish chatglm code

* [shardformer] polish code

* [shardformer] support chatglm without layernorm

* [shardformer] chatglm shard without mlp sharding

* [shardformer] delete some file

* [shardformer] ChatGLM support layernorm sharding

* [shardformer] register without auto policy

* [shardformer] pre-commit check files

* [shardformer] fix chatglm configuration with pre-commit

---------

Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com>
Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com>

* [shardformer] whisper support flash attention (#4301)

* Feature/vit support (#4182)

* [shardformer] added tests

* [shardformer] vit test finish and support

* fix attention dropout

* [shardformer] support SAM (#4231)

* 1.support sam 2.add fused qkv for nn.Linear

* update utils support set element in list

* overtwrite SamVisionAttention foward to use DropoutForParallelInput

* remove unused code

* [shardformer] support whisper (#4212)

* support whisper

* fix bug in vocabembedding

* support downstream model of whisper

* update readme

* Feature/chatglm (#4240)

* [shardformer] added tests

* [shardformer] vit test finish and support

* [shardformer] chatglm ready

* import chatglm

* [shardformer] add test kit in model zoo for chatglm

* [sharformer] add first version of policy of chatglm

* [shardformer] polish chatglm code

* [shardformer] polish code

* [shardformer] support chatglm without layernorm

* [shardformer] chatglm shard without mlp sharding

* [shardformer] delete some file

* [shardformer] ChatGLM support layernorm sharding

* [shardformer] register without auto policy

* [shardformer] pre-commit check files

* [shardformer] fix chatglm configuration with pre-commit

* [shardformer] whisper support flash attention

* [shardformer] whisper support flash attention

* [shardformer]whisper support jit operator

---------

Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com>
Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com>

* [shardformer] sam support flash attention (#4316)

* Feature/vit support (#4182)

* [shardformer] added tests

* [shardformer] vit test finish and support

* fix attention dropout

* [shardformer] support SAM (#4231)

* 1.support sam 2.add fused qkv for nn.Linear

* update utils support set element in list

* overtwrite SamVisionAttention foward to use DropoutForParallelInput

* remove unused code

* [shardformer] support whisper (#4212)

* support whisper

* fix bug in vocabembedding

* support downstream model of whisper

* update readme

* Feature/chatglm (#4240)

* [shardformer] added tests

* [shardformer] vit test finish and support

* [shardformer] chatglm ready

* import chatglm

* [shardformer] add test kit in model zoo for chatglm

* [sharformer] add first version of policy of chatglm

* [shardformer] polish chatglm code

* [shardformer] polish code

* [shardformer] support chatglm without layernorm

* [shardformer] chatglm shard without mlp sharding

* [shardformer] delete some file

* [shardformer] ChatGLM support layernorm sharding

* [shardformer] register without auto policy

* [shardformer] pre-commit check files

* [shardformer] fix chatglm configuration with pre-commit

* [shardformer] sam support flash attention

---------

Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com>
Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com>

* [shardformer] merge blip2/chatglm  (#4321)

* Feature/vit support (#4182)

* [shardformer] added tests

* [shardformer] vit test finish and support

* fix attention dropout

* [shardformer] support SAM (#4231)

* 1.support sam 2.add fused qkv for nn.Linear

* update utils support set element in list

* overtwrite SamVisionAttention foward to use DropoutForParallelInput

* remove unused code

* [shardformer] support whisper (#4212)

* support whisper

* fix bug in vocabembedding

* support downstream model of whisper

* update readme

* Feature/chatglm (#4240)

* [shardformer] added tests

* [shardformer] vit test finish and support

* [shardformer] chatglm ready

* import chatglm

* [shardformer] add test kit in model zoo for chatglm

* [sharformer] add first version of policy of chatglm

* [shardformer] polish chatglm code

* [shardformer] polish code

* [shardformer] support chatglm without layernorm

* [shardformer] chatglm shard without mlp sharding

* [shardformer] delete some file

* [shardformer] ChatGLM support layernorm sharding

* [shardformer] register without auto policy

* [shardformer] pre-commit check files

* [shardformer] fix chatglm configuration with pre-commit

* [shardformer] added tests

* [shardformer] vit test finish and support

* import chatglm

* [shardformer] add test kit in model zoo for chatglm

* [sharformer] add first version of policy of chatglm

* [shardformer] polish chatglm code

* [shardformer] polish code

* [shardformer] support chatglm without layernorm

* [shardformer] delete some file

* [shardformer] ChatGLM support layernorm sharding

* [shardformer] register without auto policy

* [shardformer] pre-commit check files

* [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit

* [shardformer] support Blip2 (#4243)

* support base blip2

* add support for downstream blip2 model

* update readme

* add forward injection

* skip not compatible models test

* fix test for gemini and low_level_zero_pugin

---------

Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com>
Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com>
Co-authored-by: klhhhhh <1412841649@qq.com>

* [shardformer] blip2 support flash attention and jit operator (#4325)

* Feature/vit support (#4182)

* [shardformer] added tests

* [shardformer] vit test finish and support

* fix attention dropout

* [shardformer] support SAM (#4231)

* 1.support sam 2.add fused qkv for nn.Linear

* update utils support set element in list

* overtwrite SamVisionAttention foward to use DropoutForParallelInput

* remove unused code

* [shardformer] support whisper (#4212)

* support whisper

* fix bug in vocabembedding

* support downstream model of whisper

* update readme

* Feature/chatglm (#4240)

* [shardformer] added tests

* [shardformer] vit test finish and support

* [shardformer] chatglm ready

* import chatglm

* [shardformer] add test kit in model zoo for chatglm

* [sharformer] add first version of policy of chatglm

* [shardformer] polish chatglm code

* [shardformer] polish code

* [shardformer] support chatglm without layernorm

* [shardformer] chatglm shard without mlp sharding

* [shardformer] delete some file

* [shardformer] ChatGLM support layernorm sharding

* [shardformer] register without auto policy

* [shardformer] pre-commit check files

* [shardformer] fix chatglm configuration with pre-commit

* [shardformer] added tests

* [shardformer] vit test finish and support

* import chatglm

* [shardformer] add test kit in model zoo for chatglm

* [sharformer] add first version of policy of chatglm

* [shardformer] polish chatglm code

* [shardformer] polish code

* [shardformer] support chatglm without layernorm

* [shardformer] delete some file

* [shardformer] ChatGLM support layernorm sharding

* [shardformer] register without auto policy

* [shardformer] pre-commit check files

* [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit

* [shardformer] support Blip2 (#4243)

* support base blip2

* add support for downstream blip2 model

* update readme

* add forward injection

* skip not compatible models test

* fix test for gemini and low_level_zero_pugin

* [shardformer] blip2 support flash attention and jit operator

* [shardformer] blip2 support flash attention and jit operator

* [shardformer] blip2 support flash attention and jit operator

---------

Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com>
Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com>
Co-authored-by: klhhhhh <1412841649@qq.com>

* [shardformer] chatglm support flash attention and jit operator (#4330)

* Feature/vit support (#4182)

* [shardformer] added tests

* [shardformer] vit test finish and support

* fix attention dropout

* [shardformer] support SAM (#4231)

* 1.support sam 2.add fused qkv for nn.Linear

* update utils support set element in list

* overtwrite SamVisionAttention foward to use DropoutForParallelInput

* remove unused code

* [shardformer] support whisper (#4212)

* support whisper

* fix bug in vocabembedding

* support downstream model of whisper

* update readme

* Feature/chatglm (#4240)

* [shardformer] added tests

* [shardformer] vit test finish and support

* [shardformer] chatglm ready

* import chatglm

* [shardformer] add test kit in model zoo for chatglm

* [sharformer] add first version of policy of chatglm

* [shardformer] polish chatglm code

* [shardformer] polish code

* [shardformer] support chatglm without layernorm

* [shardformer] chatglm shard without mlp sharding

* [shardformer] delete some file

* [shardformer] ChatGLM support layernorm sharding

* [shardformer] register without auto policy

* [shardformer] pre-commit check files

* [shardformer] fix chatglm configuration with pre-commit

* [shardformer] added tests

* [shardformer] vit test finish and support

* import chatglm

* [shardformer] add test kit in model zoo for chatglm

* [sharformer] add first version of policy of chatglm

* [shardformer] polish chatglm code

* [shardformer] polish code

* [shardformer] support chatglm without layernorm

* [shardformer] delete some file

* [shardformer] ChatGLM support layernorm sharding

* [shardformer] register without auto policy

* [shardformer] pre-commit check files

* [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit

* [shardformer] support Blip2 (#4243)

* support base blip2

* add support for downstream blip2 model

* update readme

* add forward injection

* skip not compatible models test

* fix test for gemini and low_level_zero_pugin

* [shardformer] chatglm support flash attention and jit operator

* [shardformer] chatglm support flash attention and jit operator

* [shardformer] chatglm support flash attention and jit operator

* [shardformer] chatglm support flash attention and jit operator

---------

Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com>
Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com>
Co-authored-by: klhhhhh <1412841649@qq.com>

* [shardformer] vit support flash attention and jit operator (#4334)

* Feature/vit support (#4182)

* [shardformer] added tests

* [shardformer] vit test finish and support

* fix attention dropout

* [shardformer] support SAM (#4231)

* 1.support sam 2.add fused qkv for nn.Linear

* update utils support set element in list

* overtwrite SamVisionAttention foward to use DropoutForParallelInput

* remove unused code

* [shardformer] support whisper (#4212)

* support whisper

* fix bug in vocabembedding

* support downstream model of whisper

* update readme

* Feature/chatglm (#4240)

* [shardformer] added tests

* [shardformer] vit test finish and support

* [shardformer] chatglm ready

* import chatglm

* [shardformer] add test kit in model zoo for chatglm

* [sharformer] add first version of policy of chatglm

* [shardformer] polish chatglm code

* [shardformer] polish code

* [shardformer] support chatglm without layernorm

* [shardformer] chatglm shard without mlp sharding

* [shardformer] delete some file

* [shardformer] ChatGLM support layernorm sharding

* [shardformer] register without auto policy

* [shardformer] pre-commit check files

* [shardformer] fix chatglm configuration with pre-commit

* [shardformer] added tests

* [shardformer] vit test finish and support

* import chatglm

* [shardformer] add test kit in model zoo for chatglm

* [sharformer] add first version of policy of chatglm

* [shardformer] polish chatglm code

* [shardformer] polish code

* [shardformer] support chatglm without layernorm

* [shardformer] delete some file

* [shardformer] ChatGLM support layernorm sharding

* [shardformer] register without auto policy

* [shardformer] pre-commit check files

* [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit

* [shardformer] support Blip2 (#4243)

* support base blip2

* add support for downstream blip2 model

* update readme

* add forward injection

* skip not compatible models test

* fix test for gemini and low_level_zero_pugin

* [shardformer] vit support flash attention and jit operator

* [shardformer] vit support flash attention and jit operator

---------

Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com>
Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com>
Co-authored-by: klhhhhh <1412841649@qq.com>

* [pipeline] merge flash attention branch

* [pipeline] merge flash attention branch

* [pipeline] merge flash attention branch

* [pipeline] fix conflict

* [pipeline] fix conflict

* Merge branch 'feature/pipeline' into feature/pipeline

* Merge branch 'feature/pipeline' into feature/pipeline

* Merge branch 'feature/pipeline' into feature/pipeline

* activate checks

* activate checks

* activate checks

* activate checks

* activate checks

* activate checks

* activate checks

* activate checks

* fix flash attention tests

* gemini ignore whisper

* fix vit

* fix xformers import handle

---------

Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com>
Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com>
Co-authored-by: klhhhhh <1412841649@qq.com>
This commit is contained in:
flybird1111
2023-08-07 16:41:07 +08:00
committed by Hongxin Liu
parent a88e92251d
commit 906426cb44
52 changed files with 2060 additions and 1555 deletions

View File

@@ -20,7 +20,7 @@ def data_gen():
# token_type_ids = tokenized_input['token_type_ids']
input_ids = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]], dtype=torch.int64)
token_type_ids = torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 0]], dtype=torch.int64)
return dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
@@ -69,19 +69,21 @@ def data_gen_for_mcq():
# data['labels'] = torch.tensor([0], dtype=torch.int64)
input_ids = torch.tensor([[[
101, 1999, 3304, 1010, 10733, 2366, 1999, 5337, 10906, 1010, 2107, 2004, 2012, 1037, 4825, 1010, 2003, 3591,
4895, 14540, 6610, 2094, 1012, 102, 2009, 2003, 8828, 2007, 1037, 9292, 1998, 1037, 5442, 1012, 102
4895, 14540, 6610, 2094, 1012, 102, 2009, 2003, 8828, 2007, 1037, 9292, 1998, 1037, 5442, 1012, 102, 102
],
[
101, 1999, 3304, 1010, 10733, 2366, 1999, 5337, 10906, 1010, 2107, 2004, 2012, 1037,
4825, 1010, 2003, 3591, 4895, 14540, 6610, 2094, 1012, 102, 2009, 2003, 8828, 2096,
2218, 1999, 1996, 2192, 1012, 102, 0
2218, 1999, 1996, 2192, 1012, 102, 0, 0
]]])
token_type_ids = torch.tensor(
[[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]]])
[[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
0]]])
attention_mask = torch.tensor(
[[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]]])
[[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
0]]])
labels = torch.tensor([0], dtype=torch.int64)
return dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, labels=labels)

View File

@@ -38,6 +38,7 @@ output_transform_fn = lambda x: x
loss_fn_blip2_model = lambda x: x.loss
config = transformers.Blip2Config()
config.vision_config.patch_size = 14
config.text_config.num_hidden_layers = 1
config.qformer_config.num_hidden_layers = 1
config.vision_config.num_hidden_layers = 1

View File

@@ -16,8 +16,8 @@ def data_gen():
# tokenized_input = tokenizer(input, return_tensors='pt')
# input_ids = tokenized_input['input_ids']
# attention_mask = tokenized_input['attention_mask']
input_ids = torch.tensor([[59414, 15, 2670, 35433, 632, 207595]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1]], dtype=torch.int64)
input_ids = torch.tensor([[59414, 15, 2670, 35433, 632, 207595, 632, 207595]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
return dict(input_ids=input_ids, attention_mask=attention_mask)
@@ -33,7 +33,7 @@ def data_gen_for_token_classification():
# token classification data gen
# `labels` is the type not the token id for token classification, 0 or 1
data = data_gen()
data['labels'] = torch.tensor([[0, 0, 0, 0, 0, 0]], dtype=torch.int64)
data['labels'] = torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0]], dtype=torch.int64)
return data
@@ -53,8 +53,8 @@ def data_gen_for_question_answering():
# inputs = tokenizer(question, text, return_tensors="pt")
input_ids = torch.tensor(
[[57647, 1620, 23967, 620, 107373, 34, 91514, 620, 107373, 1620, 267, 35378, 48946, 18161]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
[[57647, 1620, 23967, 620, 107373, 34, 91514, 620, 107373, 1620, 267, 35378, 48946, 18161, 48946, 18161]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
start_positions = torch.tensor([1], dtype=torch.int64)
end_positions = torch.tensor([10], dtype=torch.int64)
return dict(input_ids=input_ids,

View File

@@ -6,7 +6,6 @@ from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import ChatGLM
from ..registry import ModelAttribute, model_zoo
# ================================
# Register single-sentence ChatGLM
# ================================

View File

@@ -1,58 +0,0 @@
from transformers import PretrainedConfig
class ChatGLMConfig(PretrainedConfig):
model_type = "chatglm"
def __init__(self,
num_layers=28,
padded_vocab_size=65024,
hidden_size=4096,
ffn_hidden_size=13696,
kv_channels=128,
num_attention_heads=32,
seq_length=2048,
hidden_dropout=0.0,
attention_dropout=0.0,
layernorm_epsilon=1e-5,
rmsnorm=True,
apply_residual_connection_post_layernorm=False,
post_layer_norm=True,
add_bias_linear=False,
add_qkv_bias=False,
bias_dropout_fusion=True,
multi_query_attention=False,
multi_query_group_num=1,
apply_query_key_layer_scaling=True,
attention_softmax_in_fp32=True,
fp32_residual_connection=False,
quantization_bit=0,
pre_seq_len=None,
prefix_projection=False,
**kwargs):
self.num_layers = num_layers
self.vocab_size = padded_vocab_size
self.padded_vocab_size = padded_vocab_size
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.kv_channels = kv_channels
self.num_attention_heads = num_attention_heads
self.seq_length = seq_length
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.layernorm_epsilon = layernorm_epsilon
self.rmsnorm = rmsnorm
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
self.post_layer_norm = post_layer_norm
self.add_bias_linear = add_bias_linear
self.add_qkv_bias = add_qkv_bias
self.bias_dropout_fusion = bias_dropout_fusion
self.multi_query_attention = multi_query_attention
self.multi_query_group_num = multi_query_group_num
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
self.fp32_residual_connection = fp32_residual_connection
self.quantization_bit = quantization_bit
self.pre_seq_len = pre_seq_len
self.prefix_projection = prefix_projection
super().__init__(**kwargs)

View File

@@ -18,8 +18,8 @@ def data_gen():
# tokenized_input = tokenizer(input, return_tensors='pt')
# input_ids = tokenized_input['input_ids']
# attention_mask = tokenized_input['attention_mask']
input_ids = torch.tensor([[15496, 11, 616, 3290, 318, 13779]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1]], dtype=torch.int64)
input_ids = torch.tensor([[15496, 11, 616, 3290, 318, 13779, 318, 13779]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
return dict(input_ids=input_ids, attention_mask=attention_mask)
@@ -46,7 +46,7 @@ def data_gen_for_token_classification():
# token classification data gen
# `labels` is the type not the token id for token classification, 0 or 1
data = data_gen()
data['labels'] = torch.tensor([[0, 0, 0, 0, 0, 1]], dtype=torch.int64)
data['labels'] = torch.tensor([[0, 0, 0, 0, 0, 0, 0, 1]], dtype=torch.int64)
return data

View File

@@ -16,8 +16,9 @@ def data_gen_for_encoder_only():
# config = T5Config(decoder_start_token_id=0)
# tokenizer = T5Tokenizer.from_pretrained("t5-small")
# input_ids = tokenizer("translate English to German: The house is wonderful.", return_tensors="pt").input_ids
input_ids = torch.Tensor([[13959, 1566, 12, 2968, 10, 37, 629, 19, 1627, 5, 1]]).long()
return dict(input_ids=input_ids)
input_ids = torch.Tensor([[13959, 1566, 12, 2968, 10, 37, 629, 19, 1627, 5, 1, 12]]).long()
attention_mask = torch.Tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]]).long()
return dict(input_ids=input_ids, attention_mask=attention_mask)
def data_gen_for_conditional_generation():
@@ -25,17 +26,16 @@ def data_gen_for_conditional_generation():
#
# labels = tokenizer("Das Haus ist wunderbar.", return_tensors="pt").input_ids
data = data_gen_for_encoder_only()
labels = torch.Tensor([[644, 4598, 229, 19250, 5, 1]]).long()
labels = torch.Tensor([[644, 4598, 229, 19250, 5, 1, 644, 4598, 229, 19250, 5, 1]]).long()
data['labels'] = labels
return data
def data_gen_for_t5_model():
# decoder_inputs_ids is obtained with the following code
#
# decoder_input_ids = model._shift_right(input_ids)
data = data_gen_for_encoder_only()
decoder_input_ids = torch.Tensor([[0, 13959, 1566, 12, 2968, 10, 37, 629, 19, 1627, 5]]).long()
decoder_input_ids = torch.Tensor([[0, 13959, 1566, 12, 2968, 10, 37, 629, 19, 1627, 5, 5]]).long()
data['decoder_input_ids'] = decoder_input_ids
return data

View File

@@ -76,14 +76,14 @@ model_zoo.register(name='transformers_whisper',
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_whisperForConditionalGeneration',
model_zoo.register(name='transformers_whisper_for_conditional_generation',
model_fn=lambda: transformers.WhisperForConditionalGeneration(config),
data_gen_fn=data_gen_for_conditional_generation,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_attr,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_whisperWhisperForAudioClassification',
model_zoo.register(name='transformers_whisper_for_audio_classification',
model_fn=lambda: transformers.WhisperForAudioClassification(config),
data_gen_fn=data_gen_for_audio_classification,
output_transform_fn=output_transform_fn,

View File

@@ -93,7 +93,7 @@ def check_gemini_plugin(init_method: str = 'none', early_stop: bool = True):
'transformers_vit_for_image_classification', 'transformers_chatglm',
'transformers_chatglm_for_conditional_generation', 'transformers_blip2',
'transformers_blip2_conditional_gerneration', 'transformers_sam', 'transformers_whisper',
'transformers_whisperForConditionalGeneration', 'transformers_whisperWhisperForAudioClassification'
'transformers_whisper_for_conditional_generation', 'transformers_whisper_for_audio_classification'
]:
continue

View File

@@ -21,7 +21,13 @@ from colossalai.shardformer._utils import getattr_
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
def build_model(model_fn, enable_fused_normalization=True, enable_tensor_parallelism=True, use_lazy_init: bool = False):
def build_model(model_fn,
enable_fused_normalization=True,
enable_tensor_parallelism=True,
enable_flash_attention=False,
enable_jit_fused=False,
use_lazy_init: bool = False):
# create new model
ctx = LazyInitContext() if use_lazy_init else nullcontext()
with ctx:
# create new model
@@ -31,7 +37,10 @@ def build_model(model_fn, enable_fused_normalization=True, enable_tensor_paralle
ctx.materialize(org_model)
# shard model
shard_config = ShardConfig(enable_fused_normalization=enable_fused_normalization,
enable_tensor_parallelism=enable_tensor_parallelism)
enable_tensor_parallelism=enable_tensor_parallelism,
enable_flash_attention=enable_flash_attention,
enable_jit_fused=enable_jit_fused)
model_copy = copy.deepcopy(org_model)
shard_former = ShardFormer(shard_config=shard_config)
sharded_model, shared_params = shard_former.optimize(model_copy)
return org_model.cuda(), sharded_model.cuda()

View File

@@ -46,14 +46,17 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
check_grad(bert, sharded_bert, row_layer_for_check, atol=1e-7, rtol=1e-3, dim=1, verbose=False)
@parameterize('enable_fused_normalization', [False, True])
@parameterize('enable_tensor_parallelism', [False, True])
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
@parameterize('enable_flash_attention', [True, False])
@parameterize('enable_jit_fused', [True, False])
@parameterize('use_lazy_init', [False, True])
def run_bert_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
def run_bert_test(enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention, enable_jit_fused,
use_lazy_init):
sub_model_zoo = model_zoo.get_sub_registry('transformers_bert')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
use_lazy_init)
enable_flash_attention, enable_jit_fused, use_lazy_init)
check_state_dict(org_model, sharded_model, name=name)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)

View File

@@ -47,10 +47,13 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
def run_blip2_test(enable_fused_normalization, enable_tensor_parallelism):
@parameterize('enable_flash_attention', [True, False])
@parameterize('enable_jit_fused', [True, False])
def run_blip2_test(enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention, enable_jit_fused):
sub_model_zoo = model_zoo.get_sub_registry('transformers_blip2')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
enable_flash_attention, enable_jit_fused)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()

View File

@@ -44,13 +44,15 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
@parameterize('enable_flash_attention', [True, False])
@parameterize('enable_jit_fused', [True, False])
@parameterize('use_lazy_init', [False, True])
def run_bloom_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
def run_bloom_test(enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention, enable_jit_fused,
use_lazy_init):
sub_model_zoo = model_zoo.get_sub_registry('transformers_bloom')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
use_lazy_init)
check_state_dict(org_model, sharded_model, name=name)
enable_flash_attention, enable_jit_fused, use_lazy_init)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()

View File

@@ -72,7 +72,9 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
def run_chatglm_test(enable_fused_normalization, enable_tensor_parallelism):
@parameterize('enable_flash_attention', [True, False])
@parameterize('enable_jit_fused', [True, False])
def run_chatglm_test(enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention, enable_jit_fused):
sub_model_zoo = model_zoo.get_sub_registry('transformers_chatglm')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
# create new model
@@ -80,7 +82,9 @@ def run_chatglm_test(enable_fused_normalization, enable_tensor_parallelism):
# shard model
shard_config = ShardConfig(enable_fused_normalization=enable_fused_normalization,
enable_tensor_parallelism=enable_tensor_parallelism)
enable_tensor_parallelism=enable_tensor_parallelism,
enable_flash_attention=enable_flash_attention,
enable_jit_fused=enable_jit_fused)
model_copy = copy.deepcopy(org_model)
shard_former = ShardFormer(shard_config=shard_config)
if name == "transformers_chatglm":

View File

@@ -68,7 +68,6 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
torch.cuda.empty_cache()
@parameterize('test_config', [{
'tp_size': 1,
'pp_size': 2,

View File

@@ -49,12 +49,13 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
@parameterize('enable_flash_attention', [True, False])
@parameterize('use_lazy_init', [False, True])
def run_gpt2_llama(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
def run_gpt2_llama(enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention, use_lazy_init):
sub_model_zoo = model_zoo.get_sub_registry('transformers_llama')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
use_lazy_init)
enable_flash_attention, use_lazy_init)
check_state_dict(org_model, sharded_model, name=name)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()

View File

@@ -42,18 +42,21 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
# check grad
col_layer_for_check = ['decoder.layers[0].self_attn.q_proj', 'decoder.embed_tokens']
row_layer_for_check = ['decoder.layers[0].self_attn.out_proj']
check_grad(opt_model, shard_opt_model, col_layer_for_check, atol=1e-7, rtol=1e-3, dim=0, verbose=False)
check_grad(opt_model, shard_opt_model, row_layer_for_check, atol=1e-7, rtol=1e-3, dim=1, verbose=False)
check_grad(opt_model, shard_opt_model, col_layer_for_check, atol=1e-6, rtol=1e-3, dim=0, verbose=False)
check_grad(opt_model, shard_opt_model, row_layer_for_check, atol=1e-6, rtol=1e-3, dim=1, verbose=False)
@parameterize('use_lazy_init', [False, True])
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
@parameterize('use_lazy_init', [False, True])
def run_t5_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
@parameterize('enable_flash_attention', [True, False])
@parameterize('enable_jit_fused', [True, False])
def run_opt_test(use_lazy_init, enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention,
enable_jit_fused):
sub_model_zoo = model_zoo.get_sub_registry('transformers_opt')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
use_lazy_init)
enable_flash_attention, enable_jit_fused, use_lazy_init)
check_state_dict(org_model, sharded_model, name=name)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()
@@ -62,7 +65,7 @@ def run_t5_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_
def check_OPTModel(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_t5_test()
run_opt_test()
@pytest.mark.dist

View File

@@ -41,10 +41,12 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
def run_sam_test(enable_fused_normalization, enable_tensor_parallelism):
@parameterize('enable_flash_attention', [True, False])
def run_sam_test(enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention):
sub_model_zoo = model_zoo.get_sub_registry('transformers_sam')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
enable_flash_attention)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()

View File

@@ -33,8 +33,8 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
# check grad
col_layer_for_check = ['encoder.block[0].layer[0].SelfAttention.q', 'shared']
row_layer_for_check = ['encoder.block[0].layer[0].SelfAttention.relative_attention_bias']
check_grad(org_model, sharded_model, col_layer_for_check, atol=1e-7, rtol=1e-5, dim=0, verbose=False)
check_grad(org_model, sharded_model, row_layer_for_check, atol=1e-7, rtol=1e-5, dim=1, verbose=False)
check_grad(org_model, sharded_model, col_layer_for_check, atol=1e-6, rtol=1e-5, dim=0, verbose=False)
check_grad(org_model, sharded_model, row_layer_for_check, atol=1e-6, rtol=1e-5, dim=1, verbose=False)
# check weights are tied
if hasattr(org_model, 'lm_head'):
@@ -45,11 +45,14 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
@parameterize('use_lazy_init', [False, True])
def run_t5_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
@parameterize('enable_flash_attention', [True, False])
@parameterize('enable_jit_fused', [True, False])
def run_t5_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init, enable_flash_attention,
enable_jit_fused):
sub_model_zoo = model_zoo.get_sub_registry('transformers_t5')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
use_lazy_init)
enable_flash_attention, enable_jit_fused, use_lazy_init)
check_state_dict(org_model, sharded_model, name=name)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()

View File

@@ -20,7 +20,9 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
# check forward
org_output, org_loss, shard_output, shard_loss = run_forward(org_model, sharded_model, data_gen_fn,
output_transform_fn, loss_fn)
assert_hf_output_close(org_output, shard_output, atol=1e-3, rtol=1e-3)
# do backward
org_loss.backward()
shard_loss.backward()
@@ -45,10 +47,13 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
def run_vit_test(enable_fused_normalization, enable_tensor_parallelism):
@parameterize('enable_flash_attention', [True, False])
@parameterize('enable_jit_fused', [True, False])
def run_vit_test(enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention, enable_jit_fused):
sub_model_zoo = model_zoo.get_sub_registry('transformers_vit')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
enable_flash_attention, enable_jit_fused)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()

View File

@@ -48,12 +48,16 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
def run_whisper_test(enable_fused_normalization, enable_tensor_parallelism):
@parameterize('enable_flash_attention', [True, False])
@parameterize('enable_jit_fused', [True, False])
def run_whisper_test(enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention, enable_jit_fused):
sub_model_zoo = model_zoo.get_sub_registry('transformers_whisper')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn,
enable_fused_normalization=enable_fused_normalization,
enable_tensor_parallelism=enable_tensor_parallelism)
enable_tensor_parallelism=enable_tensor_parallelism,
enable_flash_attention=enable_flash_attention,
enable_jit_fused=enable_jit_fused)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()

View File

@@ -167,4 +167,4 @@ def test_cross_attention(proj_shape, dtype, dropout):
torch.allclose(y, out_ref, atol=1e-18), f"{(y - out_ref).abs().max()}"
torch.allclose(grad_q, grad_ref_q, atol=1e-7), f"{(grad_q - grad_ref_q).abs().max()}"
torch.allclose(grad_k, grad_ref_k, atol=1e-7), f"{(grad_k - grad_ref_k).abs().max()}"
torch.allclose(grad_v, grad_ref_v, atol=1e-7), f"{(grad_v - grad_ref_v).abs().max()}"
torch.allclose(grad_v, grad_ref_v, atol=1e-7), f"{(grad_v - grad_ref_v).abs().max()}"