mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-03 10:06:44 +00:00
[autoparallel] Patch meta information of torch.matmul
(#2584)
* [autoparallel] matmul metainfo * [auto_parallel] remove unused print * [tests] skip test_matmul_handler when torch version is lower than 1.12.0
This commit is contained in:
@@ -0,0 +1,145 @@
|
||||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler import LinearModuleHandler
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||
MemoryCost,
|
||||
OperationData,
|
||||
OperationDataType,
|
||||
ShardingStrategy,
|
||||
StrategiesVector,
|
||||
TrainCycleItem,
|
||||
)
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||
from colossalai.testing.utils import parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.utils import free_port
|
||||
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy
|
||||
|
||||
if torch.__version__ >= '1.12.0':
|
||||
from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason="need pytorch 1.12.0 or higher for aten level operations")
|
||||
@parameterize(
|
||||
'tensor_shapes',
|
||||
[
|
||||
[[128], [128]], # dot product
|
||||
[[64, 128], [128]], # mat-vec
|
||||
[[128], [128, 64]], # vec-mat
|
||||
[[64, 64, 128], [128]], # batched mat-vec
|
||||
[[128], [64, 128, 64]], # vec-batched mat
|
||||
[[64, 128], [128, 192]], # mat-mat
|
||||
[[64, 64, 128], [128, 192]], # batched mat-mat
|
||||
[[64, 128], [64, 128, 192]], # mat-batched mat
|
||||
[[64, 64, 128], [64, 128, 192]], # batched mat-batched mat (matched batch dims)
|
||||
[[64, 1, 64, 128], [64, 128, 192]], # batched mat-batched mat (unmatched batch dims)
|
||||
])
|
||||
def test_matmul_function_meta_info(tensor_shapes):
|
||||
meta_func = meta_register.get(torch.matmul)
|
||||
|
||||
# construct meta tensors
|
||||
input_tensor = torch.rand(*tensor_shapes[0], device="meta")
|
||||
other_tensor = torch.rand(*tensor_shapes[1], device="meta")
|
||||
output_tensor = torch.matmul(input_tensor, other_tensor)
|
||||
|
||||
# construct operation data
|
||||
input_data = OperationData(
|
||||
name="input",
|
||||
data=input_tensor,
|
||||
type=OperationDataType.ARG,
|
||||
logical_shape=input_tensor.shape,
|
||||
)
|
||||
other_data = OperationData(
|
||||
name="other",
|
||||
data=other_tensor,
|
||||
type=OperationDataType.ARG,
|
||||
logical_shape=other_tensor.shape,
|
||||
)
|
||||
output_data = OperationData(
|
||||
name="output",
|
||||
data=output_tensor,
|
||||
type=OperationDataType.OUTPUT,
|
||||
logical_shape=output_tensor.shape,
|
||||
)
|
||||
|
||||
# construct args and kwargs
|
||||
args = [input_data, other_data, output_data]
|
||||
kwargs = {'inplace': False}
|
||||
|
||||
# estimated results
|
||||
compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out = meta_func(*args, **kwargs)
|
||||
|
||||
# actual results
|
||||
input_real_tensor = torch.rand(*tensor_shapes[0], device="cuda:0")
|
||||
other_real_tensor = torch.rand(*tensor_shapes[1], device="cuda:0")
|
||||
|
||||
input_real_tensor.requires_grad = True
|
||||
other_real_tensor.requires_grad = True
|
||||
|
||||
# fwd
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
mem_stamp0 = torch.cuda.memory_allocated()
|
||||
output_real_tensor = torch.matmul(input_real_tensor, other_real_tensor)
|
||||
fwd_allocated = torch.cuda.memory_allocated() - mem_stamp0
|
||||
fwd_peak = torch.cuda.max_memory_allocated() - mem_stamp0
|
||||
|
||||
# bwd
|
||||
upstream_grad = torch.rand_like(output_real_tensor)
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
mem_stamp0 = torch.cuda.memory_allocated()
|
||||
torch.autograd.backward(output_real_tensor, upstream_grad)
|
||||
bwd_allocated = torch.cuda.memory_allocated() - mem_stamp0
|
||||
bwd_peak = torch.cuda.max_memory_allocated() - mem_stamp0
|
||||
|
||||
compute_cost: TrainCycleItem
|
||||
memory_cost: TrainCycleItem
|
||||
|
||||
print("=====================")
|
||||
print(f"input shapes: {tensor_shapes[0]}, {tensor_shapes[1]}")
|
||||
print(f"output shapes: {output_tensor.shape}")
|
||||
|
||||
# estimated results
|
||||
print("Estimated Results")
|
||||
|
||||
# compute cost
|
||||
print("compute_cost:")
|
||||
print(f" fwd: {compute_cost.fwd}")
|
||||
print(f" bwd: {compute_cost.bwd}")
|
||||
|
||||
# memory cost
|
||||
print("memory_cost:")
|
||||
# fwd
|
||||
print(f" fwd activation: {memory_cost.fwd.activation / 1024} KB")
|
||||
print(f" fwd buffer: {memory_cost.fwd.buffer / 1024} KB")
|
||||
print(f" fwd temp: {memory_cost.fwd.temp / 1024} KB")
|
||||
print(f" fwd parameter: {memory_cost.fwd.parameter / 1024} KB")
|
||||
|
||||
# bwd
|
||||
print(f" bwd activation: {memory_cost.bwd.activation / 1024} KB")
|
||||
print(f" bwd buffer: {memory_cost.bwd.buffer / 1024} KB")
|
||||
print(f" bwd temp: {memory_cost.bwd.temp / 1024} KB")
|
||||
print(f" bwd parameter: {memory_cost.bwd.parameter / 1024} KB")
|
||||
|
||||
# actual results
|
||||
print("Actual Results")
|
||||
|
||||
print("memory_cost:")
|
||||
# fwd
|
||||
print(f" fwd allocated: {fwd_allocated / 1024} KB")
|
||||
print(f" fwd peak: {fwd_peak / 1024} KB")
|
||||
|
||||
# bwd
|
||||
print(f" bwd allocated: {bwd_allocated / 1024} KB")
|
||||
print(f" bwd peak: {bwd_peak / 1024} KB")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_matmul_function_meta_info()
|
@@ -1,3 +1,4 @@
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
@@ -24,6 +25,7 @@ class MatMulModule(nn.Module):
|
||||
return torch.matmul(x1, x2)
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason="need pytorch 1.12.0 or higher for aten level operations")
|
||||
@parameterize(
|
||||
'tensor_shapes',
|
||||
[
|
||||
|
Reference in New Issue
Block a user