mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-12-03 04:13:20 +00:00
[pipeline/rpc] implement distributed optimizer | test with assert_close (#1486)
* support p2p communication with any type of object | pass test * reconstruct pipeline schedule with p2p_v2.py(support communication with List[Any]) | pass test * [engin/schedule] use p2p_v2 to recontruct pipeline_schedule * [pipeline/rpc] implement a demo for PP with cuda rpc framework * [pipeline/rpc] support interleaving | fix checkpoint bug | change logic when dispatch data in work_list to ensure steady 1F1B * [pipeline/rpc] implement distributed optimizer | test with assert_close * [pipeline/rpc] implement distributed optimizer | test with assert_close
This commit is contained in:
85
tests/test_pipeline/test_cuda_rpc_optimizer.py
Normal file
85
tests/test_pipeline/test_cuda_rpc_optimizer.py
Normal file
@@ -0,0 +1,85 @@
|
||||
import os
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed.rpc as rpc
|
||||
from torch import autograd
|
||||
from torch.optim import SGD, Adam, RMSprop, Optimizer
|
||||
from colorama import Back, Style
|
||||
|
||||
from colossalai.pipeline.rpc.PipelineBase import FillDrainPipelineEngine, OneFOneBPipelineEngine
|
||||
from colossalai.testing import assert_close
|
||||
from rpc_test_utils import rpc_run, parse_args, RpcTestModel
|
||||
|
||||
|
||||
def run_master(args):
|
||||
torch.manual_seed(100)
|
||||
|
||||
device = args.device
|
||||
stage_num = args.world_size
|
||||
chunk = args.chunk
|
||||
actual_stage_num = stage_num * chunk
|
||||
use_interleave = args.use_interleave
|
||||
use_checkpoint = args.use_checkpoint
|
||||
num_microbatches = args.num_microbatches
|
||||
optimizer_class = globals()[args.optimizer]
|
||||
|
||||
lr = 1e-3
|
||||
|
||||
sample_num = 1024
|
||||
feat_num = 100
|
||||
h = 100
|
||||
batch_size = 1024
|
||||
|
||||
assert sample_num % batch_size == 0
|
||||
batch_num = sample_num // batch_size
|
||||
|
||||
input_sample = torch.randn((sample_num, feat_num), device=device)
|
||||
|
||||
module_partitions = [RpcTestModel(pp_rank, actual_stage_num, feat_num, h) for pp_rank in range(actual_stage_num)]
|
||||
|
||||
engine = OneFOneBPipelineEngine(module_partitions=module_partitions,
|
||||
stage_num=stage_num,
|
||||
num_microbatches=num_microbatches,
|
||||
device=device,
|
||||
chunk=chunk,
|
||||
use_interleave=use_interleave,
|
||||
checkpoint=use_checkpoint)
|
||||
|
||||
engine.initialize_optimizer(optimizer_class, lr=lr)
|
||||
|
||||
_ = engine.forward_backward(input_sample)
|
||||
engine.step()
|
||||
|
||||
cuda_rpc_result = []
|
||||
single_result = []
|
||||
actual_stage_num = engine._get_actual_stage_num()
|
||||
|
||||
# compute parameters after updating in cuda rpc
|
||||
parameters = engine.remote_parameters()
|
||||
for stage_id in range(actual_stage_num):
|
||||
for p in parameters[stage_id]:
|
||||
cuda_rpc_result.append(p)
|
||||
|
||||
# compute forward result and backward grad of parameters just in rank_0
|
||||
test_model = nn.Sequential(*module_partitions).to(device)
|
||||
optimizer: Optimizer = optimizer_class(test_model.parameters(), lr=lr)
|
||||
input_sample = input_sample.requires_grad_()
|
||||
out_val = test_model(input_sample).sum()
|
||||
autograd.backward(out_val)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
for p in test_model.parameters():
|
||||
single_result.append(p)
|
||||
|
||||
assert len(cuda_rpc_result) == len(single_result)
|
||||
for r_c, r_s in zip(cuda_rpc_result, single_result):
|
||||
assert_close(r_c, r_s, 0.001, 0.001)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_args()
|
||||
rpc_run(args, run_master)
|
||||
Reference in New Issue
Block a user