[pipeline/rpc] implement distributed optimizer | test with assert_close (#1486)

* support p2p communication with any type of object | pass test

* reconstruct pipeline schedule with p2p_v2.py(support communication with List[Any]) | pass test

* [engin/schedule] use p2p_v2 to recontruct pipeline_schedule

* [pipeline/rpc] implement a demo for PP with cuda rpc framework

* [pipeline/rpc] support interleaving | fix checkpoint bug | change logic when dispatch data in work_list to ensure steady 1F1B

* [pipeline/rpc] implement distributed optimizer | test with assert_close

* [pipeline/rpc] implement distributed optimizer | test with assert_close
This commit is contained in:
Kirigaya Kazuto
2022-08-25 10:49:01 +08:00
committed by GitHub
parent 3da68d6b1b
commit 9145aef2b4
5 changed files with 220 additions and 157 deletions

View File

@@ -7,32 +7,10 @@ import torch.multiprocessing as mp
import torch.distributed.rpc as rpc
from colossalai.pipeline.rpc.PipelineBase import FillDrainPipelineEngine, OneFOneBPipelineEngine
from rpc_test_utils import rpc_run, parse_args, RpcTestModel
class TestModel(nn.Module):
def __init__(self, stage_id, actual_stage_num, feat_num, h) -> None:
super().__init__()
self.rank = stage_id
self.is_last_rank = stage_id == actual_stage_num - 1
self.linear_name = f'linear_{stage_id}'
if stage_id == 0:
setattr(self, self.linear_name, nn.Linear(feat_num, h))
elif stage_id == actual_stage_num - 1:
setattr(self, self.linear_name, nn.Linear(h, 1))
else:
setattr(self, self.linear_name, nn.Linear(h, h))
def forward(self, x) -> torch.Tensor:
linear: nn.Module = getattr(self, self.linear_name)
out: torch.Tensor = linear(x)
if self.is_last_rank:
out = out.sum()
return out
def run_main(args):
def run_master(args):
torch.manual_seed(100)
device = args.device
@@ -53,7 +31,7 @@ def run_main(args):
input_sample = torch.randn((sample_num, feat_num), device=device)
module_partitions = [TestModel(pp_rank, actual_stage_num, feat_num, h) for pp_rank in range(actual_stage_num)]
module_partitions = [RpcTestModel(pp_rank, actual_stage_num, feat_num, h) for pp_rank in range(actual_stage_num)]
engine = OneFOneBPipelineEngine(module_partitions=module_partitions,
stage_num=stage_num,
@@ -66,44 +44,6 @@ def run_main(args):
_ = engine.forward_backward(input_sample)
def run_worker(rank, args):
os.environ['MASTER_ADDR'] = args.master_addr
os.environ['MASTER_PORT'] = args.master_port
# config rpc
# if cuda is used, set_device_map is a must is configured
# for cuda is not supported in torch rpc by default
options = rpc.TensorPipeRpcBackendOptions(num_worker_threads=args.num_worker_threads)
world_size = args.world_size
for rank_idx in range(world_size):
options.set_device_map(f'work{rank_idx}', {rank: rank_idx})
rpc.init_rpc(name=f'work{rank}', rank=rank, world_size=world_size, rpc_backend_options=options)
# in rpc mode, only rank 0 is needed to be coded
if rank == 0:
run_main(args)
# barrier here
rpc.shutdown()
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size', type=int, default=2)
parser.add_argument('--num_microbatches', type=int, default=2)
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--chunk', type=int, default=1)
parser.add_argument('--use_checkpoint', action='store_true')
parser.add_argument('--use_interleave', action='store_true')
parser.add_argument('--master_addr', type=str, default='localhost')
parser.add_argument('--master_port', type=str, default='29020')
parser.add_argument('--num_worker_threads', type=str, default=128)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
world_size = args.world_size
assert args.device in ['cpu', 'cuda'], "device must be cpu or cuda!"
mp.spawn(run_worker, args=(args,), nprocs=world_size)
rpc_run(args, run_master)