mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-28 13:05:26 +00:00
[shardformer] Add layernorm (#4072)
* add layernorm to bert * add layernorm test * add layernorm test with load state dict * add use_mixedfusedLN in shard config * refactor policy to support fused_layernorm
This commit is contained in:
@@ -1,8 +1,14 @@
|
||||
import torch.nn as nn
|
||||
from transformers.models.bert.modeling_bert import BertEmbeddings, BertLayer, BertLMPredictionHead
|
||||
from transformers.models.bert.modeling_bert import (
|
||||
BertEmbeddings,
|
||||
BertForMultipleChoice,
|
||||
BertForSequenceClassification,
|
||||
BertForTokenClassification,
|
||||
BertLayer,
|
||||
BertLMPredictionHead,
|
||||
)
|
||||
|
||||
import colossalai.shardformer.layer as col_nn
|
||||
from colossalai.shardformer.layer.dropout import Dropout1D
|
||||
|
||||
from .._utils import getattr_, setattr_
|
||||
from .basepolicy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
||||
@@ -24,7 +30,7 @@ class BertPolicy(Policy):
|
||||
return self.model
|
||||
|
||||
def module_policy(self):
|
||||
return {
|
||||
base_policy = {
|
||||
BertLayer:
|
||||
ModulePolicyDescription(
|
||||
attribute_replacement={
|
||||
@@ -53,10 +59,18 @@ class BertPolicy(Policy):
|
||||
suffix="attention.self.value",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="attention.self.dropout",
|
||||
target_module=col_nn.Dropout1D,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="attention.output.dense",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="attention.output.dropout",
|
||||
target_module=col_nn.Dropout1D,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="intermediate.dense",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
@@ -66,12 +80,8 @@ class BertPolicy(Policy):
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="attention.self.dropout",
|
||||
target_module=Dropout1D,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="attention.output.dropout",
|
||||
target_module=Dropout1D,
|
||||
suffix="output.dropout",
|
||||
target_module=col_nn.Dropout1D,
|
||||
)
|
||||
]),
|
||||
BertEmbeddings:
|
||||
@@ -81,10 +91,32 @@ class BertPolicy(Policy):
|
||||
SubModuleReplacementDescription(
|
||||
suffix="word_embeddings",
|
||||
target_module=col_nn.VocabParallelEmbedding1D,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="dropout",
|
||||
target_module=col_nn.Dropout1D,
|
||||
)
|
||||
])
|
||||
}
|
||||
|
||||
if self.shard_config.fused_layernorm:
|
||||
base_policy[BertLayer].sub_module_replacement.append(
|
||||
SubModuleReplacementDescription(
|
||||
suffix="attention.output.LayerNorm",
|
||||
target_module=col_nn.LayerNorm1D,
|
||||
))
|
||||
base_policy[BertLayer].sub_module_replacement.append(
|
||||
SubModuleReplacementDescription(
|
||||
suffix="output.LayerNorm",
|
||||
target_module=col_nn.LayerNorm1D,
|
||||
))
|
||||
base_policy[BertEmbeddings].sub_module_replacement.append(
|
||||
SubModuleReplacementDescription(
|
||||
suffix="LayerNorm",
|
||||
target_module=col_nn.LayerNorm1D,
|
||||
),)
|
||||
return base_policy
|
||||
|
||||
def new_model_class(self):
|
||||
# do nothing
|
||||
return self.model
|
||||
@@ -115,9 +147,15 @@ class BertForPretrainingPolicy(BertPolicy):
|
||||
sub_module_replacement=[
|
||||
SubModuleReplacementDescription(suffix="decoder",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
kwargs={"gather_output": True})
|
||||
kwargs={"gather_output": True}),
|
||||
])
|
||||
}
|
||||
if self.shard_config.fused_layernorm:
|
||||
addon_module[BertLMPredictionHead].sub_module_replacement.append(
|
||||
SubModuleReplacementDescription(
|
||||
suffix="transform.LayerNorm",
|
||||
target_module=col_nn.LayerNorm1D,
|
||||
))
|
||||
module_policy.update(addon_module)
|
||||
return module_policy
|
||||
|
||||
@@ -146,9 +184,15 @@ class BertLMHeadModelPolicy(BertPolicy):
|
||||
sub_module_replacement=[
|
||||
SubModuleReplacementDescription(suffix="decoder",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
kwargs={"gather_output": True})
|
||||
kwargs={"gather_output": True}),
|
||||
])
|
||||
}
|
||||
if self.shard_config.fused_layernorm:
|
||||
addon_module[BertLMPredictionHead].sub_module_replacement.append(
|
||||
SubModuleReplacementDescription(
|
||||
suffix="transform.LayerNorm",
|
||||
target_module=col_nn.LayerNorm1D,
|
||||
))
|
||||
module_policy.update(addon_module)
|
||||
return module_policy
|
||||
|
||||
@@ -177,9 +221,15 @@ class BertForMaskedLMPolicy(BertPolicy):
|
||||
sub_module_replacement=[
|
||||
SubModuleReplacementDescription(suffix="decoder",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
kwargs={"gather_output": True})
|
||||
kwargs={"gather_output": True}),
|
||||
])
|
||||
}
|
||||
if self.shard_config.fused_layernorm:
|
||||
addon_module[BertLMPredictionHead].sub_module_replacement.append(
|
||||
SubModuleReplacementDescription(
|
||||
suffix="transform.LayerNorm",
|
||||
target_module=col_nn.LayerNorm1D,
|
||||
))
|
||||
module_policy.update(addon_module)
|
||||
return module_policy
|
||||
|
||||
@@ -199,6 +249,22 @@ class BertForSequenceClassificationPolicy(BertPolicy):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def module_policy(self):
|
||||
module_policy = super().module_policy()
|
||||
addon_module = {
|
||||
BertForSequenceClassification:
|
||||
ModulePolicyDescription(attribute_replacement={},
|
||||
param_replacement=[],
|
||||
sub_module_replacement=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="dropout",
|
||||
target_module=col_nn.Dropout1D,
|
||||
)
|
||||
])
|
||||
}
|
||||
module_policy.update(addon_module)
|
||||
return module_policy
|
||||
|
||||
|
||||
# BertForTokenClassification
|
||||
class BertForTokenClassificationPolicy(BertPolicy):
|
||||
@@ -206,6 +272,22 @@ class BertForTokenClassificationPolicy(BertPolicy):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def module_policy(self):
|
||||
module_policy = super().module_policy()
|
||||
addon_module = {
|
||||
BertForTokenClassification:
|
||||
ModulePolicyDescription(attribute_replacement={},
|
||||
param_replacement=[],
|
||||
sub_module_replacement=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="dropout",
|
||||
target_module=col_nn.Dropout1D,
|
||||
)
|
||||
])
|
||||
}
|
||||
module_policy.update(addon_module)
|
||||
return module_policy
|
||||
|
||||
|
||||
# BertForNextSentencePrediction
|
||||
class BertForNextSentencePredictionPolicy(BertPolicy):
|
||||
@@ -219,3 +301,19 @@ class BertForMultipleChoicePolicy(BertPolicy):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def module_policy(self):
|
||||
module_policy = super().module_policy()
|
||||
addon_module = {
|
||||
BertForMultipleChoice:
|
||||
ModulePolicyDescription(attribute_replacement={},
|
||||
param_replacement=[],
|
||||
sub_module_replacement=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="dropout",
|
||||
target_module=col_nn.Dropout1D,
|
||||
)
|
||||
])
|
||||
}
|
||||
module_policy.update(addon_module)
|
||||
return module_policy
|
||||
|
Reference in New Issue
Block a user