mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-13 21:22:49 +00:00
[Inference]Update inference config and fix test (#5178)
* unify the config setting * fix test * fix import * fix test * fix * fix * add logger * revise log info --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com>
This commit is contained in:
84
colossalai/inference/config.py
Normal file
84
colossalai/inference/config.py
Normal file
@@ -0,0 +1,84 @@
|
||||
import logging
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
GibiByte = 1024**3
|
||||
|
||||
logger = logging.Logger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class InferenceConfig:
|
||||
"""The inference configuration.
|
||||
|
||||
Args:
|
||||
model: Path or nn.Module of this model.
|
||||
tokenizer: Path of the tokenizer to use.
|
||||
tokenizer_mode: "auto" will use the fast tokenizer if available, and "slow" will always use the slow tokenizer.
|
||||
trust_remote_code: Whether to trust remote code from huggingface.
|
||||
max_batch_size: Maximum batch size.
|
||||
max_output_len: Maximum output length.
|
||||
max_input_len: Maximum input length.
|
||||
block_size: The number of blocks in a logical block.
|
||||
dtype: The data type for weights and activations.
|
||||
tp_size: Tensor parallel size.
|
||||
pp_size: Pipeline parallel size.
|
||||
max_seq_len: Maximum length of input sentence.
|
||||
quant_mode: Quantization mode.
|
||||
revision: The specific version(a branch, name, a commit id, or a tag name) of model to use.
|
||||
beam_width: The maximum beam width used to initialize KV Cache.
|
||||
During generation, the beam width provided as sampling parameter should be less than or equivalent to this value.
|
||||
prefill_ratio: A controling ratio for prefill and decoding in running list, we will do a step of prefill
|
||||
when the actual value exceeds this ratio.
|
||||
"""
|
||||
|
||||
model: Union[str, nn.Module]
|
||||
tokenizer: str = None
|
||||
tokenizer_mode: str = "auto"
|
||||
trust_remote_code: bool = False
|
||||
max_batch_size: int = None
|
||||
max_output_len: int = 256
|
||||
max_input_len: int = 256
|
||||
block_size: int = 16
|
||||
dtype: Union[str, torch.dtype] = torch.float32
|
||||
tp_size: int = 1
|
||||
pp_size: int = 1
|
||||
max_seq_len: Optional[int] = None
|
||||
quant_mode: Optional[str] = None
|
||||
revision: Optional[str] = None
|
||||
beam_width: int = 1
|
||||
# TODO: beam search is not support for now
|
||||
prefill_ratio: Optional[float] = 1.2
|
||||
# the ratio of prefill sequences to decoding sequences, we do prefill step once the actual value exceeds ratio
|
||||
|
||||
def _init_batch_size(self):
|
||||
"""
|
||||
MAX_BATCH_SIZE is set to acurately utilize the memory of gpu.
|
||||
We take a simple method to determine it by GPU memory size, user can still set it manually.
|
||||
"""
|
||||
if self.max_batch_size is not None:
|
||||
# already set by user
|
||||
return
|
||||
|
||||
device = torch.device("cuda")
|
||||
total_mem = torch.cuda.get_device_properties(device).total_memory // GibiByte
|
||||
self.max_batch_size = 8
|
||||
|
||||
if 40 < total_mem <= 60:
|
||||
self.max_batch_size = 16
|
||||
elif 60 < total_mem <= 80:
|
||||
self.max_batch_size = 32
|
||||
logger.info(
|
||||
f"The maximum batch size is automatically set to {self.max_batch_size} as no value is provided by the user."
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
self._init_batch_size()
|
||||
self._verify_args()
|
||||
|
||||
def _verify_args(self):
|
||||
if self.tokenizer_mode not in ["auto", "slow"]:
|
||||
raise ValueError("Tokenizer mode must be " "either 'auto' or 'slow'," f"but got {self.tokenizer_mode}")
|
Reference in New Issue
Block a user